Antimicrobial Peptides: Amphibian Host Defense Peptides

2019 ◽  
Vol 26 (32) ◽  
pp. 5924-5946 ◽  
Author(s):  
Jiri Patocka ◽  
Eugenie Nepovimova ◽  
Blanka Klimova ◽  
Qinghua Wu ◽  
Kamil Kuca

Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.

2021 ◽  
Vol 12 ◽  
Author(s):  
Gabrielle S. Dijksteel ◽  
Magda M. W. Ulrich ◽  
Esther Middelkoop ◽  
Bouke K. H. L. Boekema

Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.


2001 ◽  
Vol 193 (9) ◽  
pp. 1067-1076 ◽  
Author(s):  
Andreas Peschel ◽  
Ralph W. Jack ◽  
Michael Otto ◽  
L. Vincent Collins ◽  
Petra Staubitz ◽  
...  

Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism. We describe a novel staphylococcal gene, mprF, which determines resistance to several host defense peptides such as defensins and protegrins. An mprF mutant strain was killed considerably faster by human neutrophils and exhibited attenuated virulence in mice, indicating a key role for defensin resistance in the pathogenicity of S. aureus. Analysis of membrane lipids demonstrated that the mprF mutant no longer modifies phosphatidylglycerol with l-lysine. As this unusual modification leads to a reduced negative charge of the membrane surface, MprF-mediated peptide resistance is most likely based on repulsion of the cationic peptides. Accordingly, inactivation of mprF led to increased binding of antimicrobial peptides by the bacteria. MprF has no similarity with genes of known function, but related genes were identified in the genomes of several pathogens including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Enterococcus faecalis. MprF thus constitutes a novel virulence factor, which may be of general relevance for bacterial pathogens and represents a new target for attacking multidrug resistant bacteria.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 773
Author(s):  
Cesar Augusto Roque-Borda ◽  
Patricia Bento da Silva ◽  
Mosar Corrêa Rodrigues ◽  
Ricardo Bentes Azevedo ◽  
Leonardo Di Filippo ◽  
...  

Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.


2018 ◽  
Vol 25 (21) ◽  
pp. 2503-2519 ◽  
Author(s):  
Anne Kokel ◽  
Marianna Torok

Background: Since the first isolation of antimicrobial peptides (AMPs) they have attracted extensive interest in medicinal chemistry. However, only a few AMP-based drugs are currently available on the market. Despite their effectiveness, biodegradability, and versatile mode of action that is less likely to induce resistance compared to conventional antibiotics, AMPs suffer from major issues that need to be addressed to broaden their use. Notably, AMPs can lack selectivity leading to side effects and cytotoxicity, and also exhibit in vivo instability. Several strategies are being actively considered to overcome the limitations that restrain the success of AMPs. Methods: In the current work, recent strategies reported for improving AMPs in the context of drug design and delivery were surveyed, and also their possible impact on patients and the environment was assessed. Results: As a major advantage AMPs possess an easily tunable skeleton offering opportunities to improve their properties. Strategic structural modifications and the beneficial properties of cyclic or branched AMPs in term of stability have been reported. The conjugation of AMPs with nanoparticles has also been explored to increase their in vivo stability. Other techniques such as the coupling of AMPs with specific antibodies aim to increase the selectivity of the potential drug towards the target. These strategies were evaluated for their effect on the environment highlighting green technologies. Conclusion: Although further research is needed taking into account both environmental and human health consequences of novel AMPs, several of these compounds are promising drug candidates for use in sustainable medicine.


2019 ◽  
Vol 20 (9) ◽  
pp. 885-892
Author(s):  
Sara Silva ◽  
Nuno Vale

Cationic antimicrobial peptides (CAMPs) can be considered as new potential therapeutic agents for Tuberculosis treatment with a specific amino acid sequence. New studies can be developed in the future to improve the pharmacological properties of CAMPs and also understand possible resistance mechanisms. This review discusses the principal properties of natural and/or synthetic CAMPs, and how these new peptides have a significant specificity for Mycobacterium tuberculosis. Also, we propose some alternative strategies to enhance the therapeutic activity of these CAMPs that include coadministration with nanoparticles and/or classic drugs.


2020 ◽  
Vol 21 (10) ◽  
pp. 1011-1026
Author(s):  
Bruna O. Costa ◽  
Marlon H. Cardoso ◽  
Octávio L. Franco

: Aminoglycosides and β-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and β-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas β-lactamases hydrolyze the β-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and β-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and β-lactamases, and how these molecules could be used for future treatment strategies.


2021 ◽  
Vol 11 (12) ◽  
pp. 5352
Author(s):  
Ana Margarida Pereira ◽  
Diana Gomes ◽  
André da Costa ◽  
Simoni Campos Dias ◽  
Margarida Casal ◽  
...  

Antibacterial resistance is a major worldwide threat due to the increasing number of infections caused by antibiotic-resistant bacteria with medical devices being a major source of these infections. This suggests the need for new antimicrobial biomaterial designs able to withstand the increasing pressure of antimicrobial resistance. Recombinant protein polymers (rPPs) are an emerging class of nature-inspired biopolymers with unique chemical, physical and biological properties. These polymers can be functionalized with antimicrobial molecules utilizing recombinant DNA technology and then produced in microbial cell factories. In this work, we report the functionalization of rPBPs based on elastin and silk-elastin with different antimicrobial peptides (AMPs). These polymers were produced in Escherichia coli, successfully purified by employing non-chromatographic processes, and used for the production of free-standing films. The antimicrobial activity of the materials was evaluated against Gram-positive and Gram-negative bacteria, and results showed that the polymers demonstrated antimicrobial activity, pointing out the potential of these biopolymers for the development of new advanced antimicrobial materials.


2021 ◽  
Vol 22 (3) ◽  
pp. 1014
Author(s):  
Aleksandra Tymoszewska ◽  
Tamara Aleksandrzak-Piekarczyk

The emergence of antibiotic-resistant bacteria led to an urgent need for next-generation antimicrobial agents with novel mechanisms of action. The use of positively charged antimicrobial peptides that target cytoplasmic membrane is an especially promising strategy since essential functions and the conserved structure of the membrane hinder the development of bacterial resistance. Aureocin A53- and enterocin L50-like bacteriocins are highly cationic, membrane-targeting antimicrobial peptides that have potential as next-generation antibiotics. However, the mechanisms of resistance to these bacteriocins and cross-resistance against antibiotics must be examined before application to ensure their safe use. Here, in the model bacterium Lactococcus lactis, we studied the development of resistance to selected aureocin A53- and enterocin L50-like bacteriocins and its correlation with antibiotics. First, to generate spontaneous resistant mutants, L.lactis was exposed to bacteriocin BHT-B. Sequencing of their genomes revealed single nucleotide polymorphisms (SNPs) in the dgkB (yecE) and dxsA genes encoding diacylglycerol kinase and 1-deoxy-D-xylulose 5-phosphate synthase, respectively. Then, selected mutants underwent susceptibility tests with a wide array of bacteriocins and antibiotics. The highest alterations in the sensitivity of studied mutants were seen in the presence of cytoplasmic membrane targeting bacteriocins (K411, Ent7, EntL50, WelM, SalC, nisin) and antibiotics (daptomycin and gramicidin) as well as lipid II cycle-blocking bacteriocins (nisin and Lcn972) and antibiotics (bacitracin). Interestingly, decreased via the SNPs accumulation sensitivity to membrane-active bacteriocins and antibiotics resulted in the concurrently increased vulnerability to bacitracin, carbenicillin, or chlortetracycline. It is suspected that SNPs may result in alterations to the efficiency of the nascent enzymes rather than a total loss of their function as neither deletion nor overexpression of dxsA restored the phenotype observed in spontaneous mutants.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Sada Raza ◽  
Kinga Matuła ◽  
Sylwia Karoń ◽  
Jan Paczesny

Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


Sign in / Sign up

Export Citation Format

Share Document