Study on Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Iβ by Infrared Spectroscopy with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy

2006 ◽  
Vol 7 (11) ◽  
pp. 3164-3170 ◽  
Author(s):  
Akihiko Watanabe ◽  
Shigeaki Morita ◽  
Yukihiro Ozaki
2003 ◽  
Vol 57 (8) ◽  
pp. 933-942 ◽  
Author(s):  
Yuqing Wu ◽  
Ya-Qiong Hao ◽  
Min Li ◽  
Chaowei Guo ◽  
Yukihiro Ozaki

Infrared (IR) spectra of a supramolecular assembly with an azobenzene derivative and intermolecular hydrogen bonds have been measured in the temperature range from 30 to 200 °C to investigate heat-induced structural changes and thermal stability. Principal component analysis (PCA) and two kinds of two-dimensional (2D) correlation spectroscopy, variable–variable (VV) 2D and sample–sample (SS) 2D spectroscopy, have been employed to analyze the observed temperature-dependent spectral variations. The PCA and SS 2D correlation analyses have demonstrated that the complete decoupling of hydrogen bonds in the supramolecular assembly occurs between 110 and 115 °C, which is in good agreement with the results of a differential scanning calorimetry (DSC) study for the heating process. The PCA of the IR spectra in the region of 3600–3100 cm−1 has illustrated that there are at least four principal components for the different NH2 and CONH species in the present supramolecular system. The VV 2D correlation spectroscopy study has provided information about the structure and strength of hydrogen bonds of NH2 and CONH groups and their temperature-dependent variations. The different species of hydrogen-bonded NH2 and CONH groups in the supramolecular system can be clarified by the VV 2D correlation analysis. The VV 2D correlation analysis has also revealed the specific order of the temperature-induced changes in the hydrogen bonds of NH2 and CONH groups.


2018 ◽  
Vol 20 (30) ◽  
pp. 20132-20140 ◽  
Author(s):  
Li Ma ◽  
Xiaoyu Cui ◽  
Wensheng Cai ◽  
Xueguang Shao

Water with two hydrogen bonds plays an important role in the gelation of globular proteins.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 318 ◽  
Author(s):  
Hyunwoo Moon ◽  
Seunghwan Choy ◽  
Yeonju Park ◽  
Young Mee Jung ◽  
Jun Mo Koo ◽  
...  

Although collagens from vertebrates are mainly used in regenerative medicine, the most elusive issue in the collagen-based biomedical scaffolds is its insufficient mechanical strength. To solve this problem, electrospun collagen composites with chitins were prepared and molecular interactions which are the cause of the mechanical improvement in the composites were investigated by two-dimensional correlation spectroscopy (2DCOS). The electrospun collagen is composed of two kinds of polymorphs, α- and β-chitin, showing different mechanical enhancement and molecular interactions due to different inherent configurations in the crystal structure, resulting in solvent and polymer susceptibility. The collagen/α-chitin has two distinctive phases in the composite, but β-chitin composite has a relatively homogeneous phase. The β-chitin composite showed better tensile strength with ~41% and ~14% higher strength compared to collagen and α-chitin composites, respectively, due to a favorable secondary interaction, i.e., inter- rather than intra-molecular hydrogen bonds. The revealed molecular interaction indicates that β-chitin prefers to form inter-molecular hydrogen bonds with collagen by rearranging their uncrumpled crystalline regions, unlike α-chitin.


Sign in / Sign up

Export Citation Format

Share Document