Evaluation of Eluents from Separations of CD34+ Cells from Human Cord Blood Using a Commerical, Immunomagnetic Cell Separation System

2001 ◽  
Vol 17 (5) ◽  
pp. 907-916 ◽  
Author(s):  
K. Melnik ◽  
M. Nakamura ◽  
K. Comella ◽  
L.C. Lasky ◽  
M. Zborowski ◽  
...  
Cytotherapy ◽  
2012 ◽  
Vol 14 (7) ◽  
pp. 818-822 ◽  
Author(s):  
Joseph M. Blake ◽  
Ian B. Nicoud ◽  
Daniel Weber ◽  
Howard Voorhies ◽  
Katherine A. Guthrie ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Miranda Buitenhuis ◽  
Belinda Baltus ◽  
Jan-Willem J. Lammers ◽  
Paul J. Coffer ◽  
Leo Koenderman

Abstract Signal transducers and activators of transcription (STATs) have been reported to play a critical role in the differentiation of several myeloid cell lines, although the importance of STATs in the differentiation of primary human hematopoietic cells remains to be established. Terminal eosinophil differentiation is induced by interleukin-5 (IL-5), which has also been demonstrated to activate STAT5. We have investigated whether STAT5 plays a critical role during eosinophil differentiation using umbilical cord blood–derived CD34+ cells. In this ex vivo system, STAT5 expression and activation are high early during differentiation, and STAT5 protein expression is down-regulated during the final stages of eosinophil differentiation. Retroviral transductions were performed to ectopically express wild-type and dominant-negative STAT5a (STAT5aΔ750) in CD34+ cells. Transduction of cells with STAT5a resulted in enhanced proliferation compared with cells transduced with empty vector alone. Interestingly, ectopic expression of STAT5a also resulted in accelerated differentiation. In contrast, ectopic expression of STAT5aΔ750 resulted in a block in differentiation, whereas proliferation was also severely inhibited. Similar results were obtained with dominant-negative STAT5b. Forced expression of STAT5a enhanced expression of the STAT5 target genes Bcl-2 andp21WAF/Cip1, suggesting they may be important in STAT5a-mediated eosinophil differentiation. These results demonstrate that STAT5 plays a critical role in eosinophil differentiation of primary human hematopoietic cells.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4169-4177 ◽  
Author(s):  
Adeline Lepage ◽  
Marylène Leboeuf ◽  
Jean-Pierre Cazenave ◽  
Corinne de la Salle ◽  
François Lanza ◽  
...  

Abstract Megakaryocytopoiesis is a complex multistep process involving cell division, endoreplication, and maturation and resulting in the release of platelets into the blood circulation. Megakaryocytes (MK) progressively express lineage-restricted proteins, some of which play essential roles in platelet physiology. Glycoprotein (GP)Ib-V-IX (CD42) and GPIIb (CD41) are examples of MK-specific proteins having receptor properties essential for platelet adhesion and aggregation. This study defined the progressive expression of the GPIb-V-IX complex during in vitro MK maturation and compared it to that of GPIIb, an early MK marker. Human cord blood CD34+ progenitor cells were cultured in the presence of cytokines inducing megakaryocytic differentiation. GPIb-V-IX expression appeared at day 3 of culture and was strictly dependent on MK cytokine induction, whereas GPIIb was already present in immature CD34+ cells. Analysis by flow cytometry and of the messenger RNA level both showed that GPV appeared 1 day later than GPIb-IX. Microscopy studies confirmed the late appearance of GPV, which was principally localized in the cytoplasm when GPIb-IX was found on the cell surface, suggesting a delayed program of GPV synthesis and trafficking. Cell sorting studies revealed that the CD41+GPV+ population contained 4N and 8N cells at day 7, and was less effective than CD41+GPV− cells in generating burst-forming units of erythrocytes or MK colonies. This study shows that the subunits of the GPIb-V-IX complex represent unique surface markers of MK maturation. The genes coding for GPIb-IX and GPV are useful tools to study megakaryocytopoiesis and for tissue-specific or conditional expression in mature MK and platelets.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuxia Yang ◽  
Saifeng Wang ◽  
Zhenchuan Miao ◽  
Wei Ma ◽  
Yanju Zhang ◽  
...  

2001 ◽  
Vol 16 (1) ◽  
pp. 20 ◽  
Author(s):  
Ju Young Seoh ◽  
Hae Young Park ◽  
Wha Soon Chung ◽  
Seung Cheol Kim ◽  
Myong Joon Hahn ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2888-2888
Author(s):  
Ana Frias ◽  
Christopher D. Porada ◽  
Kirsten B. Crapnell ◽  
Joaquim M.S. Cabral ◽  
Esmail D. Zanjani ◽  
...  

Abstract The in vitro culture of a hematopoietic stem cell (HSC) graft with either media containing animal-derived components or a feeder layer with ill-defined pathogenic potential such as xenogeneic cell lines or cells modified by viral transformation poses risks that concern scientists and regulatory agencies. In the present studies, we avoided these risks by evaluating the ability of a human stromal-based serum free culture system (hu-ST) to support the ex-vivo expansion/maintenance of human CB HSC. CB CD34+ enriched cells were cultured in serum free medium in the presence of hu-ST with SCF, bFGF, LIF and Flt-3, and the cultures were analyzed for expansion, phenotype and clonogenic ability. We have previously reported the ability of this culture system to allow the successful expansion/maintenance of HSC along the myeloid pathway. In the present study, we investigated whether we could further develop this culture system to simultaneously expand myelopoiesis and lymphopoiesis in vitro. To this end, cord blood CD34+ cells were cultured for a total of 28 days and analyzed every 3 days for expansion and phenotype. There was a progressive increase in CD34 cell number with time in culture. The differentiative profile was primarily shifted towards the myeloid lineage with the presence of CD33, CD15, and CD14. However, a significant number of CD7+ cells were also generated. At week 2 of culture, we observed that 30% of the cells in the culture were CD7 positive. These CD7+CD2-CD3-CD5-CD56-CD16-CD34- cells were then sorted and either plated on top of new irradiated hu-ST layers in the presence of SCF, FLT-3, IL-7, IL-2, and IL-15, or cultured with IL-4, GM-CSF, and FLT-3 in the absence of stroma. Both of these cultures were maintained for an additional 2 weeks. In both sets of cultures, further expansion in the total cell number occurred with the time in culture, and by the end of the week 2, we observed that 25.3±4.18% of the cells had become CD56+ CD3-, a phenotype consistent with that of NK cells. Furthermore, cytotoxicity assays were performed and showed cytotoxic activity that increased in an E:T ratio-dependent fashion. 38.6% of the CD7+ cells grown in the presence of IL-4, GM-CSF, and FLT-3 became CD123+CD11c-, a phenotype characteristic of nonactivated dendritic cells, while 7.3–12.1% adopted an activitated dendritic cell phenotype CD83+CD1a+. In summary, we developed an in vitro culture system that reproducibly allows the effective ex vivo expansion of human cord blood HSCs while maintaining the capability of generating both myeloid and lymphoid hematopoiesis in vitro.


Sign in / Sign up

Export Citation Format

Share Document