Kinetics of the Alkaline Phosphatase Catalyzed Hydrolysis of Disodium p-Nitrophenyl Phosphate in Frozen Model Systems

2002 ◽  
Vol 18 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
N.S. Terefe ◽  
K.K. Mokwena ◽  
A.V. Loey ◽  
M. Hendrickx
1973 ◽  
Vol 51 (7) ◽  
pp. 1096-1103 ◽  
Author(s):  
Irwin Hinberg ◽  
Keith J. Laidler

An experimental study has been made of the kinetics of the hydrolysis of p-nitrophenyl phosphate catalyzed by chicken-intestinal alkaline phosphatase. The work was done in barbital buffer (carbonate above pH 9.6), and covered the pH range from 7.0 to 10.0. A sufficiently wide range of substrate concentration was used to allow reliable values of [Formula: see text] and [Formula: see text] to be determined. The results lead to pK values of 8.1 and 8.6 for the free enzyme, and it is concluded that the Michaelis complex and the phosphoryl intermediate ionize only on the acid side, the former also having a pK of 8.1. It is suggested that the group of pK 8.1 is probably an α-amino group and that the group of pK 8.6 probably corresponds to the ionization of a Zn(II)-coordinated water molecule.


1960 ◽  
Vol 43 (6) ◽  
pp. 1149-1169 ◽  
Author(s):  
M. Kunitz

Purified chicken intestinal alkaline phosphatase is active at pH 8 to 9, but becomes rapidly inactivated with change of pH to 6 or less. Also, a solution of the inactivated enzyme at pH 4.5 rapidly regains its activity at pH 8. In the range of pH 6 to 8 a solution of purified alkaline phosphatase consists of a mixture of active and inactive enzyme in equilibrium with each other. The rate of inactivation at lower pH and of reactivation at higher pH increases with increase in temperature. Also, the activity at equilibrium in the range of pH 6 to 8 increases with temperature so that a solution equilibrated at higher temperature loses part of its activity on cooling, and vice versa, a rise in temperature shifts the equilibrium toward higher activity. The kinetics of inactivation of the enzyme at lower pH and the reactivation at higher pH is that of a unimolecular reaction. The thermodynamic values for the heat and entropy of the reversible inactivation and reactivation of the enzyme are considerably lower than those observed for the reversible denaturation of proteins. The inactivated enzyme at pH 4 to 6 is rapidly reactivated on addition of Zn ions even at pH 4 to 6. However, zinc ions are unable to replace magnesium ions as cocatalysts for the enzymatic hydrolysis of organic phosphates by alkaline phosphatase.


1972 ◽  
Vol 127 (1) ◽  
pp. 87-96 ◽  
Author(s):  
P. G. Bolton ◽  
A. C. R. Dean

1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F−, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.


1966 ◽  
Vol 12 (2) ◽  
pp. 70-89 ◽  
Author(s):  
George N Bowers ◽  
Robert B McComb

Abstract A continuous spectrophotometric method for measuring serum alkaline phosphatase activity is described. The effects of temperature, pH, substrate concentration, type and molarity of the buffer, sample size, cofactors, and inhibitors on the enzymatic hydrolysis of p-nitrophenyl phosphate were studied. The optimal conditions for assay of serum alkaline phosphatase at 30° were found to be 0.75 M 2-amino-2-methyl-1-propanol buffer, pH30° 10.15, 4 mmole substrate, and 100 µl. or less sample size. Studies of the factors affecting analytical precision-i.e., control of reaction temperature, of reagent manufacture, and of standardization-are discussed. The precision of this method was 2.3% (relative standard deviation) on 10 within day replicates and 5.0% on day-to-day replicates spread over a 5-week period. The range of activity for 258 apparently healthy adult blood donors was 6-110 mU./ml. (International milliunits per milliliter), with a mean of 49 and a standard deviation of 14.


1953 ◽  
Vol 31 (1) ◽  
pp. 1-7
Author(s):  
Neil B. Madsen ◽  
Jules Tuba

The kinetics of intestinal alkaline phosphatase action on sodium β-glycerophosphate, glucose 6-phosphate, and egg lecithin have been studied and compared. The Michaelis constants indicate that the enzyme shows considerably less affinity for lecithin than for the other two substrates, and the approximate ratio of activity with lecithin, glucose 6-phosphate, and sodium β-glycerophosphate is 11 : 78.5 : 100. The energies of activation for the hydrolysis of the three substrates do not differ appreciably and the average energy of activation is 14,500 calories per gram-mole. The similarity of the energies of activation together with results from inhibition studies indicate that in all probability the same enzyme is responsible for the release of inorganic phosphorus from each of the three substrates.


Sign in / Sign up

Export Citation Format

Share Document