scholarly journals Chicken Intestinal Alkaline Phosphatase

1960 ◽  
Vol 43 (6) ◽  
pp. 1149-1169 ◽  
Author(s):  
M. Kunitz

Purified chicken intestinal alkaline phosphatase is active at pH 8 to 9, but becomes rapidly inactivated with change of pH to 6 or less. Also, a solution of the inactivated enzyme at pH 4.5 rapidly regains its activity at pH 8. In the range of pH 6 to 8 a solution of purified alkaline phosphatase consists of a mixture of active and inactive enzyme in equilibrium with each other. The rate of inactivation at lower pH and of reactivation at higher pH increases with increase in temperature. Also, the activity at equilibrium in the range of pH 6 to 8 increases with temperature so that a solution equilibrated at higher temperature loses part of its activity on cooling, and vice versa, a rise in temperature shifts the equilibrium toward higher activity. The kinetics of inactivation of the enzyme at lower pH and the reactivation at higher pH is that of a unimolecular reaction. The thermodynamic values for the heat and entropy of the reversible inactivation and reactivation of the enzyme are considerably lower than those observed for the reversible denaturation of proteins. The inactivated enzyme at pH 4 to 6 is rapidly reactivated on addition of Zn ions even at pH 4 to 6. However, zinc ions are unable to replace magnesium ions as cocatalysts for the enzymatic hydrolysis of organic phosphates by alkaline phosphatase.

1953 ◽  
Vol 31 (1) ◽  
pp. 1-7
Author(s):  
Neil B. Madsen ◽  
Jules Tuba

The kinetics of intestinal alkaline phosphatase action on sodium β-glycerophosphate, glucose 6-phosphate, and egg lecithin have been studied and compared. The Michaelis constants indicate that the enzyme shows considerably less affinity for lecithin than for the other two substrates, and the approximate ratio of activity with lecithin, glucose 6-phosphate, and sodium β-glycerophosphate is 11 : 78.5 : 100. The energies of activation for the hydrolysis of the three substrates do not differ appreciably and the average energy of activation is 14,500 calories per gram-mole. The similarity of the energies of activation together with results from inhibition studies indicate that in all probability the same enzyme is responsible for the release of inorganic phosphorus from each of the three substrates.


1973 ◽  
Vol 51 (7) ◽  
pp. 1096-1103 ◽  
Author(s):  
Irwin Hinberg ◽  
Keith J. Laidler

An experimental study has been made of the kinetics of the hydrolysis of p-nitrophenyl phosphate catalyzed by chicken-intestinal alkaline phosphatase. The work was done in barbital buffer (carbonate above pH 9.6), and covered the pH range from 7.0 to 10.0. A sufficiently wide range of substrate concentration was used to allow reliable values of [Formula: see text] and [Formula: see text] to be determined. The results lead to pK values of 8.1 and 8.6 for the free enzyme, and it is concluded that the Michaelis complex and the phosphoryl intermediate ionize only on the acid side, the former also having a pK of 8.1. It is suggested that the group of pK 8.1 is probably an α-amino group and that the group of pK 8.6 probably corresponds to the ionization of a Zn(II)-coordinated water molecule.


1962 ◽  
Vol 45 (4) ◽  
pp. 31-46 ◽  
Author(s):  
M. Kunitz

Schlesinger and Coon's report that crystalline yeast inorganic pyrophosphatase, in addition to its known ability to hydrolyze inorganic pyrophosphate in the presence of Mg ions, is also able to catalyze the hydrolysis of ATP and ADP in the presence of Zn ions was confirmed. A systematic study showed that the ratio of 370 of PPase-Mg over ATPase-Zn activities per milligram protein in various preparations of pyrophosphatase obtained in the course of isolation of crystalline pyrophosphatase from baker's yeast was nearly identical in all the preparations, independent of their purity. The course of hydrolysis of ATP by crystalline pyrophosphatase in the presence of Zn was carried out with the aid of ion exchange on Dowex 1. The finding of Schlesinger and Coon that the hydrolysis proceeds from ATP to ADP and then slowly to AMP was confirmed. The kinetics of the first phase of the reaction was found to depend on the molar ratio of Zn/ATP in the reaction mixture. Mg ions in the presence of Zn ions have an accelerating effect on the rate of hydrolysis of ATP. This suggests strongly that both activities—ATPase and PPase—are manifestations of the same active group in the protein molecule of crystalline pyrophosphatase.


1979 ◽  
Vol 57 (7) ◽  
pp. 1000-1007 ◽  
Author(s):  
L. E. Seargeant ◽  
R. A. Stinson

Kinetic parameters for the hydrolysis of a number of physiologically important phosphoesters by purified human liver alkaline phosphatase have been determined. The enzyme was studied at pH values of 7.0 to 10.0. The affinity of the enzyme for the compounds was determined by competition experiments and by their direct employment as substrates. Phosphodiesters and phosphonates were not hydrolysed but the latter were inhibitors. Calcium and magnesium ions inhibited the hydrolysis of ATP and PP1 and evidence is presented to show that the metal complexes of these substrates are not hydrolysed by alkaline phosphatase. A calcium-stimulated ATPase activity could not be demonstrated for the purified enzyme or the enzyme in the presence of a calcium-dependent regulator protein. Nevertheless, the influence of magnesium and calcium ions on the ATPase activity of alkaline phosphatase means that precautions must be taken when assaying for Ca2+-ATPase in the presence of alkaline phosphatase.The low substrate Km values and the hydrolysis which occurs at pH 7.4 mean that the enzyme could have a significant phosphohydrolytic role. However, liver cell phosphate concentrations, if accessible to the enzyme, are sufficient to strongly inhibit this activity.


1967 ◽  
Vol 102 (3) ◽  
pp. 917-921 ◽  
Author(s):  
R.H. Eaton ◽  
D. W. Moss

1. Inhibition of the pyrophosphatase and orthophosphatase activities of human liver and small-intestinal alkaline-phosphatase preparations by different classes of inhibitors has been studied. 2. Each type of substrate, pyrophosphate or orthophosphate, is a competitive inhibitor of hydrolysis of the other type. 3. l-Phenylalanine is a non-competitive inhibitor of both types of activity of the intestinal preparation, but inhibits neither activity of the liver enzyme. Arsenate is a competitive inhibitor of both activities of both preparations. For a given inhibitor, the values of K(i) are independent of the type of substrate used when measurements are made at the same pH. 4. Mg(2+) ions activate orthophosphatase but inhibit pyrophosphatase, except in very low concentrations. 5. These results are compatible with the presence in each tissue preparation of a single enzyme with one type of active centre, possessing both orthophosphatase and pyrophosphatase activities.


1968 ◽  
Vol 108 (2) ◽  
pp. 243-246 ◽  
Author(s):  
P. J. Butterworth

1. Pig kidney alkaline phosphatase is inactivated by treatment with acid at 0°. 2. Inactivated enzyme can be partially reactivated by incubation at 30° in neutral or alkaline buffer. The amount of reactivation that occurs depends on the degree of acid treatment; enzyme that has been inactivated below pH3·3 shows very little reactivation. 3. Studies of the kinetics of reactivation indicate that the process is greatly accelerated by increasing temperature and proceeds by a unimolecular mechanism. The reactivated enzyme has electrophoretic and gel-filtration properties identical with those of non-treated enzyme. 4. The results can be best explained by assuming that a lowering of the pH causes a reversible conformational change of the alkaline phosphatase molecule to a form that is no longer enzymically active but is very susceptible to permanent denaturation by prolonged acid treatment. A reactivation mechanism involving sub-unit recombination seems unlikely.


1983 ◽  
Vol 49 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Robert J. Moore ◽  
Trygve L. Veum

1. The effects of phosphorus deprivation on phytate digestibility, phosphorus utilization and intestinal phytase (EC3.1.3.8) and alkaline phosphatase (EC3.1.3.1) in rats were investigated.2. P deprivation was achieved by giving rats a diet containing 3 g P/kg and resulted in hypophosphataemia, hypercalcaemia, hypercalciuria, and lower levels of P absorbed and retained, and calcium retained.3. Rats adapted to P deprivation by increasing the digestion of total dietary-P and phytate-P.4. Levels of intestinal alkaline phosphatase and alkaline phytase were not different between the two treatment groups.5. P deprivation in the rats given the marginal-P diet may be a result of a lower absorption of total dietary-P or increased absorption of inositol phosphates formed during the enzymic hydrolysis of phytate which are not readily utilized by the rat.6. These results suggest that intestinal phytase and alkaline phosphatase do not play a role in the adaptive increase in phytate digestibility by rats given marginal-P diets. The adaptation may result from enhanced phytase or alkaline phosphatase synthesis by the gastrointestinal microflora stimulated by a lower level of P in the digesta.


Sign in / Sign up

Export Citation Format

Share Document