scholarly journals Discovery of a Substrate Selectivity Motif in Amino Acid Decarboxylases Unveils a Taurine Biosynthesis Pathway in Prokaryotes

2013 ◽  
Vol 8 (10) ◽  
pp. 2264-2271 ◽  
Author(s):  
Giulia Agnello ◽  
Leslie L. Chang ◽  
Candice M. Lamb ◽  
George Georgiou ◽  
Everett M. Stone

2006 ◽  
Vol 34 (1) ◽  
pp. 118-121 ◽  
Author(s):  
E.J. Dridge ◽  
D.J. Richardson ◽  
R.J. Lewis ◽  
C.S. Butler

The AF0174–AF0176 gene cluster in Archaeoglobus fulgidus encodes a putative oxyanion reductase of the D-type (Type II) family of molybdo-enzymes. Sequence analysis reveals that the catalytic subunit AF0176 shares low identity (31–32%) and similarity (41–42%) to both NarG and SerA, the catalytic components of the respiratory nitrate and selenate reductases respectively. Consequently, predicting the oxyanion substrate selectivity of AF0176 has proved difficult based solely on sequence alignments. In the present study, we have modelled both AF0176 and SerA on the recently determined X-ray structure of the NAR (nitrate reductase) from Escherichia coli and have identified a number of key amino acid residues, conserved in all known NAR sequences, including AF0176, that we speculate may enhance selectivity towards trigonal planar (NO3−) rather than tetrahedral (SeO42− and ClO4−) substrates.



2020 ◽  
Vol 117 (20) ◽  
pp. 10806-10817 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Ying-Chih Chiang ◽  
Tyler Smith ◽  
Maria A. Vicent ◽  
Yi Wang ◽  
...  

Radiation of the plant pyridoxal 5′-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.



ChemBioChem ◽  
2004 ◽  
Vol 5 (9) ◽  
pp. 1278-1281 ◽  
Author(s):  
Xihou Yin ◽  
Kerry L. McPhail ◽  
Kyung-ja Kim ◽  
T. Mark Zabriskie


Aquaculture ◽  
2014 ◽  
Vol 422-423 ◽  
pp. 141-145 ◽  
Author(s):  
Qingchao Wang ◽  
Gen He ◽  
Xuan Wang ◽  
Kangsen Mai ◽  
Wei Xu ◽  
...  




2012 ◽  
Vol 78 (23) ◽  
pp. 8421-8430 ◽  
Author(s):  
Christian Weber ◽  
Christine Brückner ◽  
Sheila Weinreb ◽  
Claudia Lehr ◽  
Christine Essl ◽  
...  

ABSTRACTAdipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineeredSaccharomyces cerevisiaestrain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol intocis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functionalcis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/litercis,cis-muconic acid.



2000 ◽  
Vol 27 (8) ◽  
pp. 605-611 ◽  
Author(s):  
M. Gabler ◽  
M. Hensel ◽  
L. Fischer


Sign in / Sign up

Export Citation Format

Share Document