The Mean Angular Distance Among Objects and Its Relationships with Kohonen Artificial Neural Networks

2003 ◽  
Vol 43 (5) ◽  
pp. 1403-1411 ◽  
Author(s):  
Jorge F. Magallanes ◽  
Jure Zupan ◽  
Darío Gomez ◽  
Silvia Reich ◽  
Laura Dawidowski ◽  
...  
2019 ◽  
Vol 962 ◽  
pp. 41-48
Author(s):  
Tzong Daw Wu ◽  
Jiun Shen Chen ◽  
Ching Pei Tseng ◽  
Cheng Chang Hsieh

This study presents a real-time method for determining the thickness of each layer in multilayer thin films. Artificial neural networks (ANNs) were introduced to estimate thicknesses from a transmittance spectrum. After training via theoretical spectra which were generated by thin-film optics and modified by noise, ANNs were applied to estimate the thicknesses of four-layer nanoscale films which were TiO2, Ag, Ti, and TiO2 thin films assembled sequentially on polyethylene terephthalate (PET) substrates. The results reveal that the mean squared error of the estimation is 2.6 nm2, and is accurate enough to monitor film growth in real time.


2019 ◽  
Vol 11 (14) ◽  
pp. 216 ◽  
Author(s):  
Bruno V. C. Guimarães ◽  
Sérgio L. R. Donato ◽  
Ignacio Aspiazú ◽  
Alcinei M. Azevedo ◽  
Abner J. de Carvalho

Behavior analysis and plant expression are the answers the researcher needs to construct predictive models that minimize the effects of the uncertainties of field production. The objective of this study was to compare the simple and multiple linear regression methods and the artificial neural networks to allow the maximum security in the prediction of harvest in ‘Gigante’ cactus pear. The uniformity test was conducted at the Federal Institute of Bahia, Campus Guanambi, Bahia, Brazil, coordinates 14°13′30″ S, 42°46′53″ W and altitude of 525 m. At 930 days after planting, we evaluated 384 basic units, in which were measured the following variables: plant height (PH); cladode length (CL), width (CW) and thickness (CT); cladode number (CN); total cladode area (TCA); cladode area (CA) and cladode yield (Y). For the comparison between the artificial neural networks (ANN) and regression models (single and multiple-SLR and MLR), we considered the mean prediction error (MPE), the mean quadratic error (MQE), the mean square of deviation (MSD) and the coefficient of determination (R2).The values estimated by the ANN 7-5-1 showed the best proximity to the data obtained in field conditions, followed by ANN 6-2-1, MLR (TCA and CT), SLR (TCA) and SLR (CN). In this way, the ANN models with the topologies 7-2-1 and 6-2-1, MLR with the variables total cladode area and cladode thickness and SLR with the isolated descriptors total cladode area and cladode number, explain 85.1; 81.5; 76.3; 74.09 and 65.87%, respectively, of the yield variation. The ANNs were more efficient at predicting the yield of the ‘Gigante’ cactus pear when compared to the simple and multiple linear regression models.


FinTech ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 47-62
Author(s):  
Sanjib Kumar Nayak ◽  
Sarat Chandra Nayak ◽  
Subhranginee Das

Artificial neural networks (ANNs) are suitable procedures for predicting financial time series (FTS). Cryptocurrencies are good investment assets; therefore, the effective prediction of cryptocurrencies has become a trending area of research. Capturing inherent uncertainties associated with cryptocurrency FTS with conventional methods is difficult. Though ANNs are the better alternative, fixing the optimal parameters of ANNs is a tedious job. This article develops a hybrid ANN through Rao algorithm (RA + ANN) for the effective prediction of six popular cryptocurrencies such as Bitcoin, Litecoin, Ethereum, CMC 200, Tether, and Ripple. Six comparative models such as GA + ANN, PSO + ANN, MLP, SVM, LSE, and ARIMA are developed and trained in a similar way. All these models are evaluated through the mean absolute percentage of error (MAPE) and average relative variance (ARV) metrics. It is found that the proposed RA + ANN generated the lowest MAPE and ARV values, statistically different as compared with existing methods mentioned above, and hence can be recommended as a potential financial instrument for predicting cryptocurrencies.


2003 ◽  
Vol 125 (1) ◽  
pp. 199-202 ◽  
Author(s):  
Tahsin Engin ◽  
Akif Kurt

The feasibility of using artificial neural networks (ANN) in the prediction of head reduction of centrifugal pumps handling slurries is examined. An ANN model is proposed and compared with the empirical correlation given by the present authors earlier. The comparison showed that the ANN could successfully be used for the prediction of head reductions of centrifugal slurry pumps. The mean deviation between predicted and experimental values is 5.86% which is reasonable for slurry handling processes.


Author(s):  
Mohammed Habib Al- Sharoot ◽  
Emaan Yousif Abdoon

The variations in exchange rate, especially the sudden unexpected increases and decreases, have significant impact on the national economy of any country. Iraq is no exception; therefore, the accurate forecasting of exchange rate of Iraqi dinar to US dollar plays an important role in the planning and decision-making processes as well as the maintenance of a stable economy in Iraq. This research aims to compare spectral analysis methodology to artificial neural networks in terms of forecasting the exchange rate of Iraqi dinar to US dollar based on data provided by the Iraqi Central Bank for the period 30/01/2004 and 30/12/2014. Based on the Mean Square Error (MSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error (MAPE) as criteria to compare the two methodologies, it was concluded that is artificial neural networks better than spectral analysis approach in forecasting.


Sign in / Sign up

Export Citation Format

Share Document