Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors

2005 ◽  
Vol 17 (11) ◽  
pp. 2904-2911 ◽  
Author(s):  
Ting Gao ◽  
Eric S. Tillman ◽  
Nathan S. Lewis
2003 ◽  
Vol 75 (7) ◽  
pp. 1748-1753 ◽  
Author(s):  
Eric S. Tillman ◽  
Michael E. Koscho ◽  
Robert H. Grubbs ◽  
Nathan S. Lewis

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0203044 ◽  
Author(s):  
C. Stönner ◽  
A. Edtbauer ◽  
B. Derstroff ◽  
E. Bourtsoukidis ◽  
T. Klüpfel ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6219
Author(s):  
Lixia Sheng ◽  
Yinan Ni ◽  
Jianwen Wang ◽  
Yue Chen ◽  
Hongsheng Gao

The unique fruity aroma of strawberries, a popular fruit of high economic value, is closely related to all the volatile organic compounds (VOCs) contained within them. Despite extensive studies on the identification of VOCs in strawberries, systematic studies on fruit-aroma-related VOCs are few, resulting in a lack of effective standards for accurately distinguishing aroma types. In the present study, solid-phase micro extraction and gas chromatography–mass spectrometry were used to analyze and identify VOCs in the ripe fruit of each of the 16 strawberry varieties at home and abroad and to explore their characteristic aroma components and the classification of such varieties by aroma type. The results suggested remarkable variations in the types and contents of VOCs in different strawberry varieties, of which esters were dominant. The principal volatile components, consisting of four esters, three alcohols, one aldehyde, and one ketone, in 16 strawberry varieties were detected based on the absolute and relative contents of VOCs in the fruit. The characteristic aroma components in strawberries, containing nine esters, six aldehydes, and one alcohol, were determined based on the aroma values of different VOCs, and the characteristic aroma components were divided into five types further based on aroma descriptions. Sixteen strawberry varieties were finally divided into four aroma types, namely, peachy, pineapple, fruity, and floral, based on the contributions of different types. The results provided a basis and standard for classifying strawberries by aroma type, studying the hereditary regularity of the fruity aroma of strawberries, and improving aroma quality.


2017 ◽  
Vol 17 (8) ◽  
pp. 4945-4956 ◽  
Author(s):  
Bin Yuan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Carsten Warneke ◽  
Scott Eilerman ◽  
...  

Abstract. Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.


2017 ◽  
Author(s):  
Bin Yuan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Carsten Warneke ◽  
Scott Eilerman ◽  
...  

Abstract. Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS) that can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to in the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol concentrations are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.


2020 ◽  
Vol 59 (13) ◽  
pp. 9047-9054 ◽  
Author(s):  
Shi-Li Li ◽  
Mei Li ◽  
Yan Zhang ◽  
Hui-Min Xu ◽  
Xian-Ming Zhang

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Anna De Girolamo Del Mauro ◽  
Angelica Immacolata Grimaldi ◽  
Vera La Ferrara ◽  
Ettore Massera ◽  
Maria Lucia Miglietta ◽  
...  

In the present study, we report on a simple optical method based on thin film interferometry for the swelling evaluation in polymer nanocomposite layers used for gas sensing applications. We show that white light interferometry can be profitably applied to characterize scattering materials such as polymer/carbon black nanocomposites. A properly adjusted experimental setup was implemented to monitor the swelling behavior of the sensitive films in real device operating conditions. In particular, the behavior of poly(2-hydroxyethyl methacrylate) (PHEMA) and of carbon black/PHEMA nanocomposite layers, used for volatile organic compounds (VOCs) detection, was investigated and measured under ethanol vapors exposure (max 1%). The method is very sensitive and the swelling in the range of only few nanometers can be measured. Interestingly, we have found that the nanocomposite undergoes a more pronounced swelling process with respect to pristine polymer. Ethanol diffusion coefficients in the nanocomposite were evaluated.


Sign in / Sign up

Export Citation Format

Share Document