In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites

2010 ◽  
Vol 22 (18) ◽  
pp. 5154-5164 ◽  
Author(s):  
Zhong Li ◽  
Lisa A. Fredin ◽  
Pratyush Tewari ◽  
Sara A. DiBenedetto ◽  
Michael T. Lanagan ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2364
Author(s):  
Zhiyuan He ◽  
Chi Zhang ◽  
Rangwei Meng ◽  
Xuanhui Luo ◽  
Mengwei Chen ◽  
...  

In this paper, Ag@SiO2 core-shell nanoparticles (NPs) with different shell thicknesses were prepared experimentally and introduced into the photosensitive layer of mesoscopic hole-conductor-free perovskite solar cells (PSCs) based on carbon counter electrodes. By combining simulation and experiments, the influences of different shell thickness Ag@SiO2 core-shell nanoparticles on the photoelectric properties of the PSCs were studied. The results show that, when the shell thickness of 0.1 wt% Ag@SiO2 core-shell nanoparticles is 5 nm, power conversion efficiency is improved from 13.13% to 15.25%, achieving a 16% enhancement. Through the measurement of the relevant parameters of the obtained perovskite film, we found that this gain not only comes from the increase in current density that scholars generally think, but also comes from the improvement of the film quality. Like current gain, this gain is related to the different shell thickness of Ag@SiO2 core-shell nanoparticles. Our research provides a new direction for studying the influence mechanism of Ag@SiO2 core-shell nanoparticles in perovskite solar cells.


2019 ◽  
Vol 1 (12) ◽  
pp. 4578-4591 ◽  
Author(s):  
Somayeh Talebzadeh ◽  
Clémence Queffélec ◽  
D. Andrew Knight

A comprehensive survey on methods for surface modification of noble metal–metal oxide core–shell nanoparticles is presented and highlights various strategies for binding of molecules and molecular ions to core–shell nanoparticles.


2014 ◽  
Vol 2 (42) ◽  
pp. 18087-18096 ◽  
Author(s):  
Xiaofeng Su ◽  
Brian C. Riggs ◽  
Minoru Tomozawa ◽  
J. Keith Nelson ◽  
Douglas B. Chrisey

A core–shell nano-scale mixing method is applied to fabricate highly densified BaTiO3/low melting glass nanocomposites, which appear to be a promising material system for high energy storage capacitor applications.


2020 ◽  
Vol MA2020-01 (45) ◽  
pp. 2572-2572
Author(s):  
Shin-Bei Tsai ◽  
Chih-Yang Huang ◽  
Jui-Yuan Chen ◽  
Wen-Wei Wu

Sign in / Sign up

Export Citation Format

Share Document