High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells

2013 ◽  
Vol 25 (22) ◽  
pp. 4497-4502 ◽  
Author(s):  
Thomas Moehl ◽  
Hoi Nok Tsao ◽  
Kuan-Lin Wu ◽  
Hui-Chu Hsu ◽  
Yun Chi ◽  
...  
2001 ◽  
Vol 708 ◽  
Author(s):  
Jessica Krüger ◽  
Udo Bach ◽  
Robert Plass ◽  
Marco Piccerelli ◽  
Le Cevey ◽  
...  

ABSTRACTThe performance of solid-state dye-sensitized solar cells based on spiro-MeOTAD (2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene) was considerably improved by decreasing charge recombination across the interface of the heterojunction. This was achieved by blending the hole conductor matrix with a combination of 4-tert-butylpyridine (tBP) and Li[CF3SO2]2N. Open circuit voltages (Uoc) over 900mV and short circuit currents (Isc) up to 5.1 mA were obtained, yielding an overall efficiency of 2.56 % at AM1.5 illumination. Further improvement of the device performance was observed when conducting stripes of silver were deposited onto the devices as charge collector. The beneficial effect however could be assigned to the contamination of the dye-sensitized TiO2 film with silver during the dyeing process.


2009 ◽  
Vol 11 (23) ◽  
pp. 5542-5545 ◽  
Author(s):  
Chao Teng ◽  
Xichuan Yang ◽  
Chunze Yuan ◽  
Chaoyan Li ◽  
Ruikui Chen ◽  
...  

2021 ◽  
Author(s):  
CI Chemistry International

The need for a green and more environmentally friendly energy production has led to recent research into the use of natural products in the production photovoltaic cells. In this study, TiO2-based dye-sensitized solar cells (DSSCs) were fabricated using photo-sensitizers made from ten natural dyes extracted from different plant parts (i.e. seeds, stalks, peels and flowers) of some selected plants and using candle soot carbon as a counter electrode. The chemical composition of the materials was determined using basic phytochemical screening assays. The extracted dye materials were characterized using UV and IR methods after which they were used in developing DSSCs. The DSSCs were then characterized under AM 1.5 illuminations to measure their photo-electrochemical properties. The dyes containing carboxyl and hydroxyl functional groups showed weak to large absorption under the visible light (400-700 nm) irradiation. The photo-electrochemical performance of the various cells gave an efficiency of as high as 0.18% with open circuit voltages ranging from 0.28 to 0.45 V and short-circuits photocurrent densities from 0.26 to 1.69 mA.cm-1. Better efficiencies can be attained by improving the DSSC constructional parameters.


Author(s):  
Andreas Ringleb ◽  
Raffael Ruess ◽  
Nico Hofeditz ◽  
Wolfram Heimbrodt ◽  
Tsukasa Yoshida ◽  
...  

Dye-sensitized solar cells (DSSCs) based on ZnO photoanodes have, despite extensive research, lacked behind cells based on TiO2, which is due to generally lower open-circuit voltages VOC and fill factors....


2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


2011 ◽  
Vol 50 (6) ◽  
pp. 06GF08 ◽  
Author(s):  
Shyam S. Pandey ◽  
Kyung-Young Lee ◽  
Azwar Hayat ◽  
Yuhei Ogomi ◽  
Shuzi Hayase

BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 23-28
Author(s):  
Leela Pradhan Joshi

Aluminium doped Zinc Oxide (AZO) seed layers were deposited on Fluorine doped Tin Oxide (FTO) substrates using a spin coating technique. These were then immersed in growth solutions of zinc nitrate, hexamethylenetetramine and distilled water to develop nanoplates of Zinc Oxide (ZnO). The nanostructures of ZnO grown on FTO were studied using x-ray diffraction techniques. Dye-sensitized solar cells (DSSC) were fabricated using two prepared electrodes, one of dye-loaded zinc oxide and another that was platinum coated. The electrolyte used was potassium iodide iodine solution. The performance of the assembled DSCCs was tested by drawing an IV curve. The results showed that the short circuit current and open circuit voltages were about 10 microamperes and 270 millivolts respectively.BIBECHANA 13 (2016) 23-28


Sign in / Sign up

Export Citation Format

Share Document