Tandem Action of Early−Late Transition Metal Catalysts for the Surface Coating of Multiwalled Carbon Nanotubes with Linear Low-Density Polyethylene

2008 ◽  
Vol 20 (9) ◽  
pp. 3092-3098 ◽  
Author(s):  
A. Toti ◽  
G. Giambastiani ◽  
C. Bianchini ◽  
A. Meli ◽  
S. Bredeau ◽  
...  
2011 ◽  
Vol 43 (6) ◽  
pp. 543-558 ◽  
Author(s):  
Z. Chen ◽  
S. Chen ◽  
J. Zhang

The surfactant, sodium dodecylbenzenesulfonate (NaDDBS) and coupling agents, γ-aminopropyltriethoxy sliane (KH550) and isopropyl dioleic(dioctylphosphate) titanate (NDZ101) were used to treat multiwalled carbon nanotubes in this work. The effects of surface modification of multiwalled carbon nanotubes on crystallization behavior, mechanical properties, and electrical properties of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites were studied. The results showed that NaDDBS, KH550, and NDZ101 had a favorable effect of improving the dispersion of multiwalled carbon nanotubes, but it cannot improve the interfacial interactionbetween multiwalled carbon nanotubes and the matrix. The improvement in dispersion favored the crystallization behavior and mechanical properties. Modified multiwalled carbon nanotubes had a better acceleration nucleation effect than raw multiwalled carbon nanotubes on low density polyethylene/polyolefin elastomer blends at low content (≤1 wt%). The tensile strength of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites with modified multiwalled carbon nanotubes increased with lower multiwalled carbon nanotubes content (≤1 wt%), and KH550 and NDZ101 led low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites to possess a higher tensile strength than that of NaDDBS with 1 wt% content. NaDDBS, KH550, and NDZ101 had a minor influence on the dielectric properties of the composites and even caused a decrease in the dielectric loss of composites with 10 wt% multiwalled carbon nanotubes content.


2003 ◽  
Vol 9 (3) ◽  
pp. 671-677 ◽  
Author(s):  
Rosa Fandos ◽  
Carolina Hernández ◽  
Antonio Otero ◽  
Ana Rodríguez ◽  
María José Ruiz ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Shuai Zhang ◽  
Chang Lu ◽  
Xi-ping Gao ◽  
Da-hu Yao ◽  
Yu-xin He

Carbon nanotubes (CNTs) and ammonium polyphosphate (APP) was used to improve the flame retardancy of linear low-density polyethylene/nylon-6 (LLDPE/PA6) blends. It was observed that APP or CNTs tended to be dispersed in the PA6 phase of the blends when all components were melt-blended together. CNTs dispersed in the PA6 phase caused the decrease of flame retardancy. Different processing methods were used to tailor the localization of APP and CNTs in the blends. The results showed that the localization of CNTs or APP strongly influenced the flame retardancy of blends. APP-incorporated CNTs had antagonism in blends with APP localized in the LLDPE phase and CNTs in the PA6 or LLDPE phases. A synergism between APP and CNTs was exhibited only in blend with the localization of APP in the PA6 phase and CNTs in the LLDPE phase. SEM observation showed that the residual char layer in blends with poor flame retardancy was either discontinuous or continuous but porous. A continuous and compact-residue char layer was observed in blends with excellent flame retardancy. Different morphologies of the residual char layer could be attributed to the difference of residual char mass and network structure.


Sign in / Sign up

Export Citation Format

Share Document