Precursor Oxidation State Control of Film Stoichiometry in the Metal−Organic Chemical Vapor Deposition of Tin Oxide Thin Films

1997 ◽  
Vol 9 (3) ◽  
pp. 730-735 ◽  
Author(s):  
Seigi Suh ◽  
David M. Hoffman ◽  
Lauren M. Atagi ◽  
David C. Smith ◽  
Jia-Rui Liu ◽  
...  
1995 ◽  
Vol 415 ◽  
Author(s):  
Sang Woo Lee ◽  
Donihang Liu ◽  
Ping P. Tsai ◽  
Haydn Chen

ABSTRACTTin oxide (SnO2) thin films were deposited on polycrystalline alumina (A12O3) substrates using metal organic chemical vapor deposition (MOCVD) technique at the growth temperature of 600°C. X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy were applied for the microstructure characterization of the films. The films were subjected to sensing tests under 1% H2 environment by monitoring changes in the electrical resistance of the films at elevated temperatures. There is a trend to exhibit sensor temperature characteristic in the deposited thin films which show a local maximum in the electrical resistance curve as a function of ambient temperature. The local maximum occurred at a relatively higher temperature than found in bulk sintered ceramics.


2004 ◽  
Vol 449-452 ◽  
pp. 997-1000 ◽  
Author(s):  
Gwang Pyo Choi ◽  
Yong Joo Park ◽  
Whyo Sup Noh ◽  
Jin Seong Park

Tin oxide thin films were deposited at 375 °C on α-alumina substrate by metal-organic chemical vapor deposition (MOCVD) process. A number of hillocks on the film were formed after air annealing at 500 °C for 30 min and few things in N2 annealing. The oxygen content and the binding energy after air annealing came to close the stoichiometric SnO2. The cauliflower hillocks of the film seem to be formed by the continuous migration of crystallites from a cauliflower grain on the substrate to release the stress due to the increase of oxygen content and volume.


2007 ◽  
Vol 515 (5) ◽  
pp. 2921-2925 ◽  
Author(s):  
Chunyu Wang ◽  
Volker Cimalla ◽  
Genady Cherkashinin ◽  
Henry Romanus ◽  
Majdeddin Ali ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 5A) ◽  
pp. 2839-2842 ◽  
Author(s):  
Jeong Hoon Park ◽  
Kug Sun Hong ◽  
Woon Jo Cho ◽  
Jang-Hoon Chung

1994 ◽  
Vol 9 (7) ◽  
pp. 1721-1727 ◽  
Author(s):  
Jie Si ◽  
Seshu B. Desu ◽  
Ching-Yi Tsai

Synthesis of zirconium tetramethylheptanedione [Zr(thd)4] was optimized. Purity of Zr(thd)4 was confirmed by melting point determination, carbon, and hydrogen elemental analysis and proton nuclear magnetic resonance spectrometer (NMR). By using Zr(thd)4, excellent quality ZrO2 thin films were successfully deposited on single-crystal silicon wafers by metal-organic chemical vapor deposition (MOCVD) at reduced pressures. For substrate temperatures below 530 °C, the film deposition rates were very small (⋚1 nm/min). The film deposition rates were significantly affected by (i) source temperature, (ii) substrate temperature, and (iii) total pressure. As-deposited films are carbon free. Furthermore, only the tetragonal ZrO2 phase was identified in as-deposited films. The tetragonal phase transformed progressively into the monoclinic phase as the films were subjected to a high-temperature post-deposition annealing. The optical properties of the ZrO2 thin films as a function of wavelength, in the range of 200 nm to 2000 nm, were also reported. In addition, a simplified theoretical model which considers only a surface reaction was used to analyze the deposition of ZrO2 films. The model predicated the deposition rates well for various conditions in the hot wall reactor.


Sign in / Sign up

Export Citation Format

Share Document