Enhanced Oil Recovery with the Ionic Liquid Trihexyl(tetradecyl)phosphonium Chloride: A Phase Equilibria Study at 75 °C

2013 ◽  
Vol 27 (10) ◽  
pp. 5806-5810 ◽  
Author(s):  
Sara Lago ◽  
María Francisco ◽  
Alberto Arce ◽  
Ana Soto
RSC Advances ◽  
2012 ◽  
Vol 2 (25) ◽  
pp. 9392 ◽  
Author(s):  
Sara Lago ◽  
Héctor Rodríguez ◽  
Mohammad K. Khoshkbarchi ◽  
Ana Soto ◽  
Alberto Arce

2017 ◽  
Vol 31 (7) ◽  
pp. 6758-6765 ◽  
Author(s):  
Iago Rodríguez-Palmeiro ◽  
Iria Rodríguez-Escontrela ◽  
Oscar Rodríguez ◽  
Ana Soto ◽  
Sven Reichmann ◽  
...  

2018 ◽  
Vol 3 (44) ◽  
pp. 12461-12468
Author(s):  
Lei Jiang ◽  
Jingtao Sun ◽  
Jiqian Wang ◽  
Qi Xue ◽  
Songyan Li ◽  
...  

SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 319-330 ◽  
Author(s):  
Dai Makimura ◽  
Makoto Kunieda ◽  
Yunfeng Liang ◽  
Toshifumi Matsuoka ◽  
Satoru Takahashi ◽  
...  

Summary Molecular simulation is a powerful technique for obtaining thermodynamic properties of a system of given composition at a specific temperature and pressure, and it enables us to visualize microscopic phenomena. In this work, we used simulations to study interfacial phenomena and phase equilibria, which are important to CO2-enhanced oil recovery (EOR). We conducted molecular dynamics (MD) simulation of an oil/water interface in the presence of CO2. It was found that CO2 was enriched at the interfacial region under all thermal conditions. Whereas the oil/water interfacial tension (IFT) increases with pressure, CO2 reduces the IFT by approximately one-third at low pressure and one-half at higher pressure. Further analysis on the basis of our MD trajectories shows that the O=C=O bonds to the water with a “T-shaped” structure, which provides the mechanism for CO2 enrichment at the oil/water interface. The residual nonnegligible IFT at high pressures implies that the connate or injected water in a reservoir strongly influences the transport of CO2/oil solutes in that reservoir. We used Gibbs ensemble Monte Carlo (GEMC) simulation to compute phase equilibria and obtain ternary phase diagrams of such systems as CO2/n-butane/N2 and CO2/n-butane/n-decane. Simulating hydrocarbon fluids with a mixture of CO2 and N2 enables us to evaluate the effects of N2 impurity on CO2-EOR. It also enables us to study the phase behavior, which is routinely used to evaluate the minimum miscibility pressure (MMP). We chose these two systems because experimental data are available for them. Our calculated phase equilibria are in fair agreement with experiments. We also discuss possible ways to improve the predictive capability for CO2/hydrocarbon systems. GEMC and MD simulations of systems with heavier hydrocarbons are straightforward and enable us to combine molecular-level thinking with process considerations in CO2-EOR.


1979 ◽  
Vol 19 (04) ◽  
pp. 242-252 ◽  
Author(s):  
R.S. Metcalfe ◽  
Lyman Yarborough

Abstract Carbon dioxide flooding under miscible conditions is being developed as a major process for enhanced oil recovery. This paper presents results of research studies to increase our understanding of the multiple-contact miscible displacement mechanism for CO2 flooding. Carbon dioxide displacements of three synthetic oils of increasing complexity (increasing number of hydrocarbon components) are described. The paper concentrates on results of laboratory flow studies, but uses results of phase-equilibria and numerical studies to support the conclusions.Results from studies with synthetic oils show that at least two multiple-contact miscible mechanisms, vaporization and condensation, can be identified and that the phase-equilibria data can be used as a basis for describing the mechanism. The phase-equilibria change with varying reservoir conditions, and the flow studies show that the miscible mechanism depends on the phase-equilibria behavior. Qualitative predictions with mathematical models support our conclusions.Phase-equilibria data with naturally occurring oils suggest the two mechanisms (vaporization and condensation) are relevant to CO2 displacements at reservoir conditions and are a basis for specifying the controlling mechanisms. Introduction Miscible-displacement processes, which rely on multiple contacts of injected gas and reservoir oil to develop an in-situ solvent, generally have been recognized by the petroleum industry as an important enhanced oil-recovery method. More recently, CO2 flooding has advanced to the position (in the U.S.) of being the most economically attractive of the multiple-contact miscibility (MCM) processes. Several projects have been or are currently being conducted either to study or use CO2 as an enhanced oil-recovery method. It has been demonstrated convincingly by Holm and others that CO2 can recover oil from laboratory systems and therefore from the swept zone of petroleum reservoirs using miscible displacement. However, several contradictions seem to exist in published results.. These authors attempt to establish the mechanism(s) through which CO2 and oil form a miscible solvent in situ. (The solvent thus produced is capable of performing as though the two fluids were miscible when performing as though the two fluids were miscible when injected.) In addition, little experimental work has been published to provide support for the mechanisms of multiple-contact miscibility, as originally discussed by Hutchinson and Braun.One can reasonably assume that the miscible CO2 process will be related directly to phase equilibria process will be related directly to phase equilibria because it involves intimate contact of gases and liquids. However, no data have been published to indicate that the mechanism for miscibility development may differ for varying phase-equilibria conditions.This paper presents the results of both flow and phase-equilibria studies performed to determine the phase-equilibria studies performed to determine the mechanism(s) of CO2 multiple-contact miscibility. These flow studies used CO2 to displace three multicomponent hydrocarbon mixtures under first-contact miscible, multiple-contact miscible, and immiscible conditions. Results are presented to support the vaporization mechanism as described by Hutchinson and Braun, and also to show that more than one mechanism is possible with CO2 displacements. The reason for the latter is found in the results of phase-equilibria studies. SPEJ P. 242


2016 ◽  
Vol 417 ◽  
pp. 87-95 ◽  
Author(s):  
Iria Rodríguez-Escontrela ◽  
Iago Rodríguez-Palmeiro ◽  
Oscar Rodríguez ◽  
Alberto Arce ◽  
Ana Soto

2017 ◽  
Vol 248 ◽  
pp. 153-162 ◽  
Author(s):  
Abbas Khaksar Manshad ◽  
Mansooreh Rezaei ◽  
Siamak Moradi ◽  
Iman Nowrouzi ◽  
Amir H. Mohammadi

RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37392-37398 ◽  
Author(s):  
Iago Rodríguez-Palmeiro ◽  
Iria Rodríguez-Escontrela ◽  
Oscar Rodríguez ◽  
Alberto Arce ◽  
Ana Soto

Formulations of ionic liquids and alkalis are promising for enhanced oil recovery.


Sign in / Sign up

Export Citation Format

Share Document