The Role of Sea Ice in the Fate of Contaminants in the Arctic Ocean:  Plutonium Atom Ratios in the Fram Strait

2003 ◽  
Vol 37 (21) ◽  
pp. 4848-4854 ◽  
Author(s):  
Pere Masqué ◽  
J. Kirk Cochran ◽  
Dierk Hebbeln ◽  
David J. Hirschberg ◽  
Dirk Dethleff ◽  
...  
2020 ◽  
Vol 47 (3) ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Xuezhu Wang ◽  
Sergey Danilov ◽  
Nikolay Koldunov ◽  
...  

2013 ◽  
Vol 67 ◽  
pp. 8-13 ◽  
Author(s):  
Xin He ◽  
Liguang Sun ◽  
Zhouqing Xie ◽  
Wen Huang ◽  
Nanye Long ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Jochen Knies ◽  
Christoph Vogt

AbstractImproved multiparameter records from the northern Barents Sea margin show two prominent freshwater pulses into the Arctic Ocean during MIS 5 that significantly disturbed the regional oceanic regime and probably affected global climate. Both pulses are associated with major iceberg-rafted debris (IRD) events, revealing intensive iceberg/sea ice melting. The older meltwater pulse occurred near the MIS 5/6 boundary (∼131,000 yr ago); its ∼2000 year duration and high IRD input accompanied by high illite content suggest a collapse of large-scale Saalian Glaciation in the Arctic Ocean. Movement of this meltwater with the Transpolar Drift current into the Fram Strait probably promoted freshening of Nordic Seas surface water, which may have increased sea-ice formation and significantly reduced deep-water formation. A second pulse of freshwater occurred within MIS 5a (∼77,000 yr ago); its high smectite content and relatively short duration is possibly consistent with sudden discharge of Early Weichselian ice-dammed lakes in northern Siberia as suggested by terrestrial glacial geologic data. The influence of this MIS 5a meltwater pulse has been observed at a number of sites along the Transpolar Drift, through Fram Strait, and into the Nordic Seas; it may well have been a trigger for the North Atlantic cooling event C20.


2021 ◽  
Author(s):  
Hiroshi Sumata ◽  
Laura de Steur ◽  
Dmitry Divine ◽  
Olga Pavlova ◽  
Sebastian Gerland

<p><span><span>Fram Strait is the major gateway connecting the Arctic Ocean and the northern North Atlantic Ocean where about 80 to 90% of sea ice outflow from the Arctic Ocean takes place. Long-term observations from the Fram Strait Arctic Outflow Observatory maintained by the Norwegian Polar Institute captured an unprecedented decline<!-- should we somehow add information that this statement is limited to the time since the early 1990s? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:45): "..." I slightly modified the sentence to mention this. --> of sea ice thickness in 2017 – 2018 since comprehensive observations started in the early 1990s. Four Ice Profiling Sonars moored in the East Greenland Current in Fram Strait simultaneously recorded 50 – 70 cm decline of annual mean ice thickness in comparison with preceding years. A backward trajectory analysis revealed that the decline was attributed to an anomalous sea level pressure pattern from 2017 autumn to 2018 summer. Southerly wind associated with a dipole pressure anomaly between Greenland and the Barents Sea prevented southward motion of ice floes north of Fram Strait. Hence ice pack was exposed to warm Atlantic Water in the north of Fram Strait 2 – 3 times longer than the average year, allowing more melt <!-- should also slower freezing or reduced freezing rates mentioned here during winter and spring (in addition to melt in summer and autumn)? --><!-- Reply to Sebastian Gerland (2021/01/12, 15:46): "..." I would like to keep this sentence as it is, since the analysis implies sea ice melt occurred in the vicinity of Fram Strait in winter (probably due to ocean heat flux), though we don’t have direct measurements of 2018 event. This could be an interesting implications of this study, and seeds for further investigation. -->to happen. At the same time, the dipole anomaly was responsible for the slowest observed annual mean ice drift speed in Fram Strait in the last two decades. As a consequence of the record minimum of ice thickness and the slowest drift speed, the sea ice volume transport through the Fram Strait dropped by more than 50% in comparison with the 2010 – 2017 average.</span></span></p>


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


Author(s):  
Mats Granskog ◽  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Robert M. Graham ◽  
Anja Rösel

2011 ◽  
Vol 8 (6) ◽  
pp. 2313-2376 ◽  
Author(s):  
B. Rudels

Abstract. The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893–1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.


2020 ◽  
Author(s):  
Paul A. Dodd ◽  
Tore Hattermann ◽  
Michael Karcher ◽  
Frank Kauker ◽  
Colin Stedmon

<p>The volume, characteristics and sources of freshwater circulating in the Arctic Ocean vary in time and are expected to change under a declining sea ice cover, influencing the physical environment and Arctic ecosystem. Relatively fresh (S = 32) Pacific Water, which enters the Arctic Ocean via the Bering Strait makes up a significant part of the liquid freshwater exiting the Arctic Ocean through Fram Strait. If transported to the Nordic Seas and North Atlantic via the East- and West Greenland Currents freshwater from the Pacific could have an effect on convection and dense water formation in those regions.</p><p>More than 30 repeated sections of nutrient measurements have been collected across Fram Strait between 1980 and 2019. The fraction of Pacific Water along these repeated sections can be estimated from the ratio of nitrate to phosphate. The time-series of repeated Fram Strait sections indicates that the fraction of Pacific Water passing out of the Arctic Ocean has changed significantly over the last 30 years. Pacific water fractions remained high from 1980 to 1998, but in 1999 Pacific water almost disappeared from Fram Strait, reappearing from 2011 to 2012, when there was a peak in freshwater export though Fram Strait.</p><p>Several hypotheses suggest how variations in the large-scale atmospheric circulation over the Arctic Ocean may influence the transport and pathways of Pacific Water. We show how anomalies in reanalysis wind fields are associated with the reappearance of Pacific Water in Fram Strait in recent years. Repeated sections across Fram Strait are compared with sea ice back-trajectories in the Polar Pathfinder 4 product and a simulated Pacific Water tracer in the NAOSIM numerical model to investigate likely Pacific water pathways through the Arctic Ocean and upstream drivers of changes observed in Fram Strait.</p>


Ocean Science ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 91-109 ◽  
Author(s):  
B. Rabe ◽  
P. A. Dodd ◽  
E. Hansen ◽  
E. Falck ◽  
U. Schauer ◽  
...  

Abstract. We estimated the magnitude and composition of southward liquid freshwater transports in the East Greenland Current near 79° N in the Western Fram Strait between 1998 and 2011. Previous studies have found this region to be an important pathway for liquid freshwater export from the Arctic Ocean to the Nordic Seas and the North Atlantic subpolar gyre. Our transport estimates are based on six hydrographic surveys between June and September and concurrent data from moored current meters. We combined concentrations of liquid freshwater, meteoric water (river water and precipitation), sea ice melt and brine from sea ice formation, and Pacific Water, presented in Dodd et al. (2012), with volume transport estimates from an inverse model. The average of the monthly snapshots of southward liquid freshwater transports between 10.6° W and 4° E is 100 ± 23 mSv (3160 ± 730 km3 yr−1), relative to a salinity of 34.9. This liquid freshwater transport consists of about 130% water from rivers and precipitation (meteoric water), 30% freshwater from the Pacific, and −60% (freshwater deficit) due to a mixture of sea ice melt and brine from sea ice formation. Pacific Water transports showed the highest variation in time, effectively vanishing in some of the surveys. Comparison of our results to the literature indicates that this was due to atmospherically driven variability in the advection of Pacific Water along different pathways through the Arctic Ocean. Variations in most liquid freshwater component transports appear to have been most strongly influenced by changes in the advection of these water masses to the Fram Strait. However, the local dynamics represented by the volume transports influenced the liquid freshwater component transports in individual years, in particular those of sea ice melt and brine from sea ice formation. Our results show a similar ratio of the transports of meteoric water and net sea ice melt as previous studies. However, we observed a significant increase in this ratio between the surveys in 1998 and in 2009. This can be attributed to higher concentrations of sea ice melt in 2009 that may have been due to enhanced advection of freshwater from the Beaufort Gyre to the Fram Strait. Known trends and variability in the Arctic liquid freshwater inflow from rivers are not likely to have had a significant influence on the variation of liquid freshwater component transports between our surveys. On the other hand, known freshwater inflow variability from the Pacific could have caused some of the variation we observed in the Fram Strait. The apparent absence of a trend in southward liquid freshwater transports through the Fram Strait and recent evidence of an increase in liquid freshwater storage in the Arctic Ocean raise the question: how fast will the accumulated liquid freshwater be exported from the Arctic Ocean to the deep water formation regions in the North Atlantic and will an increased export occur through the Fram Strait.


2017 ◽  
Vol 44 (20) ◽  
pp. 10,479-10,485 ◽  
Author(s):  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Robert M. Graham ◽  
Anja Rösel ◽  
Mats A. Granskog

Sign in / Sign up

Export Citation Format

Share Document