Variability of the Gaseous Elemental Mercury Sea–Air Flux of the Baltic Sea

2007 ◽  
Vol 41 (23) ◽  
pp. 8018-8023 ◽  
Author(s):  
Joachim Kuss ◽  
Bernd Schneider
2020 ◽  
Author(s):  
Stefan Osterwalder ◽  
Michelle Nerentorp ◽  
Wei Zhu ◽  
Erik Nilsson ◽  
Mats Nilsson ◽  
...  

<p>Ocean waters store approximately 400 Gg of mercury (Hg) and exchange it with the atmosphere at a high rate. Air-sea exchange of gaseous elemental mercury (Hg<sup>0</sup>) is a key process in global Hg cycling because evasion lowers the reservoir of Hg(II) available for methylation and subsequent bioaccumulation in marine fish and prolongs the atmospheric lifetime and subsequently global cycling of Hg. However, global estimates on the air-sea flux are not well constrained (1.9 to 4.2 Gg a<sup>-1</sup>) mainly because high-resolution measurements of Hg<sup>0</sup> in seawater are largely lacking and parameterization of the Hg<sup>0</sup> transfer velocity introduces uncertainties in Hg<sup>0</sup> flux modelling. We present estimates of the net Hg<sup>0</sup> flux for the Baltic Sea derived from land-based marine measurements of Hg<sup>0</sup> in air and seawater as well as micrometeorological techniques. We found that coastal waters at the ICOS field station Östergarnsholm, located east of Gotland, Sweden, were typically supersaturated with seawater Hg<sup>0</sup> (mean ± SD = 13.5 ± 3.5 ng m<sup>-3</sup>; ca. 10 % of total Hg) compared to ambient Hg<sup>0</sup> (1.3 ± 0.2 ng m<sup>-3</sup>). The Hg<sup>0</sup> flux calculated using gas-transfer wind speed relationships ranged from 0.1 to 1.3 ng m<sup>-2</sup> h<sup>-1</sup> over the course of the campaign (May 10 – June 20, 2017). The modeled Hg<sup>0</sup> flux showed a distinct diel pattern with an average daytime flux of 0.6 ng m<sup>-2</sup> h<sup>-1</sup> and nighttime flux of 0.4 ng m<sup>-2</sup> h<sup>-1</sup>, indicating that temperature and light induced production of seawater Hg<sup>0</sup> was of significance in shallow waters. Preliminary calculations of the average coastal Hg<sup>0</sup> flux simultaneously measured using direct, non-intrusive gradient-based, aerodynamic gradient and relaxed eddy accumulation techniques were 0.5 ± 1, 0.6 ± 3.8 and 0.6 ± 37 ng m<sup>-2</sup> h<sup>-1</sup>, respectively. Although, these flux estimates were in good agreement, there were indications in the temporal patters of the observations, which suggest that there is a need to reconsider the modeled flux with the support of more direct flux measurements. Direct flux measurements revealed not only Hg<sup>0</sup> evasion but also periods of Hg<sup>0</sup> dry deposition. In addition, direct measurements indicated a stronger wind speed dependence of the Hg<sup>0</sup> transfer velocity compared to CO<sub>2</sub> which appears to coincide with whitecap formation in the open sea flux footprint (wind speed > 5 m s<sup>-1</sup>). Hence, we anticipate this study as a starting point for more land-based, marine, continuous measurements of seawater Hg<sup>0</sup> concentration in combination with micrometeorological fluxes in order to improve Hg<sup>0</sup> flux estimates in regional and global scale models. In this context, directly measured Hg<sup>0</sup> fluxes will be pivotal to improve transfer velocity estimates of Hg<sup>0</sup> especially during periods of high wind speed.</p>


2017 ◽  
Author(s):  
Joachim Kuss ◽  
Siegfried Krüger ◽  
Johann Ruickoldt ◽  
Klaus-Peter Wlost

Abstract. Marginal seas are directly subjected to anthropogenic and natural influences from land in addition to receiving inputs from the atmosphere and open ocean. Together these lead to pronounced gradients and strong dynamic changes. However, in the case of mercury emissions from these seas, estimates often fail to adequately account for the spatial and temporal variability of the elemental mercury concentration in surface water (Hg0wat). In this study, a method to measure Hg0wat at high resolution was devised and subsequently validated. The better-resolved Hg0wat dataset, consisting of about one measurement per nautical mile, yielded insight into the sea's small-scale variability and thus improved the quantification of the sea's Hg0 emissions, a major source of atmospheric mercury. Research campaigns in the Baltic Sea were carried out between 2011 and 2015 during which Hg0 both in surface water and in ambient air were measured. For the former, two types of equilibrators were used. A membrane equilibrator enabled continuous equilibration and a bottle equilibrator assured that equilibrium was reached for validation. The measurements were combined with data obtained in the Baltic Sea in 2006 from a bottle equilibrator only. The Hg0 sea-air flux was newly calculated with the combined dataset based on current knowledge of the Hg0 Schmidt number, Henry's law constant, and a widely used gas-exchange transfer velocity parameterization. By using a newly developed pump-CTD with increased pumping capability in the Hg0 equilibrator measurements, Hg0wat could also be characterized in deeper water layers. A process study carried out near the Swedish island Øland in August 2015 showed that the upwelling of Hg0-depleted water contributed to Hg0 emissions of the Baltic Sea. However, a delay of a few days after contact between the upwelled water and light was apparently necessary before the biotic and abiotic transformations of ionic to volatile Hg0 produced a distinct sea-air Hg0 concentration gradient. This study clearly showed spatial, seasonal, and interannual variability in the Hg0 sea-air flux of the Baltic Sea. The average annual Hg0 emission was 0.90 ± 0.18 Mg for the Baltic Proper and to 1.73 ± 0.32 Mg for the entire Baltic Sea, which is about half the amount entrained by atmospheric deposition. A comparison of our results with the Hg0 sea-air fluxes determined in the Mediterranean Sea and in marginal seas in East Asia were to some extent similar but they partly differed in terms of the deviations in the amount and seasonality of the flux.


2018 ◽  
Vol 18 (6) ◽  
pp. 4361-4376 ◽  
Author(s):  
Joachim Kuss ◽  
Siegfried Krüger ◽  
Johann Ruickoldt ◽  
Klaus-Peter Wlost

Abstract. Marginal seas are directly subjected to anthropogenic and natural influences from land in addition to receiving inputs from the atmosphere and open ocean. Together these lead to pronounced gradients and strong dynamic changes. However, in the case of mercury emissions from these seas, estimates often fail to adequately account for the spatial and temporal variability of the elemental mercury concentration in surface water (Hg0wat). In this study, a method to measure Hg0wat at high resolution was devised and subsequently validated. The better-resolved Hg0wat dataset, consisting of about one measurement per nautical mile, yielded insight into the sea's small-scale variability and thus improved the quantification of the sea's Hg0 emission. This is important because global marine Hg0 emissions constitute a major source of atmospheric mercury. Research campaigns in the Baltic Sea were carried out between 2011 and 2015 during which Hg0 both in surface water and in ambient air were measured. For the former, two types of equilibrators were used. A membrane equilibrator enabled continuous equilibration and a bottle equilibrator assured that equilibrium was reached for validation. The measurements were combined with data obtained in the Baltic Sea in 2006 from a bottle equilibrator only. The Hg0 sea–air flux was newly calculated with the combined dataset based on current knowledge of the Hg0 Schmidt number, Henry's law constant, and a widely used gas exchange transfer velocity parameterization. By using a newly developed pump–CTD with increased pumping capability in the Hg0 equilibrator measurements, Hg0wat could also be characterized in deeper water layers. A process study carried out near the Swedish island Øland in August 2015 showed that the upwelling of Hg0-depleted water contributed to Hg0 emissions of the Baltic Sea. However, a delay of a few days after contact between the upwelled water and light was apparently necessary before the biotic and abiotic transformations of ionic to volatile Hg0 produced a distinct sea–air Hg0 concentration gradient. This study clearly showed spatial, seasonal, and interannual variability in the Hg0 sea–air flux of the Baltic Sea. The average annual Hg0 emission was 0.90  ±  0.18 Mg for the Baltic proper and extrapolated to 1.73  ±  0.32 Mg for the entire Baltic Sea, which is about half the amount entrained by atmospheric deposition. A comparison of our results with the Hg0 sea–air fluxes determined in the Mediterranean Sea and in marginal seas in East Asia were to some extent similar but they partly differed in terms of the deviations in the amount and seasonality of the flux.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

2003 ◽  
pp. 136-146
Author(s):  
K. Liuhto

Statistical data on reserves, production and exports of Russian oil are provided in the article. The author pays special attention to the expansion of opportunities of sea oil transportation by construction of new oil terminals in the North-West of the country and first of all the largest terminal in Murmansk. In his opinion, one of the main problems in this sphere is prevention of ecological accidents in the process of oil transportation through the Baltic sea ports.


Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


Author(s):  
Małgorzata Leśniewska ◽  
Małgorzata Witak

Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part III)The palaeoenvironmental changes of the south-western part of the Gulf of Gdańsk during the last 8,000 years, with reference to the stages of the Baltic Sea, were reconstructed. Diatom analyses of two cores taken from the shallower and deeper parts of the basin enabled the conclusion to be drawn that the microflora studied developed in the three Baltic phases: Mastogloia, Littorina and Post-Littorina. Moreover, the so-called anthropogenic assemblage was observed in subbottom sediments of the study area.


Sign in / Sign up

Export Citation Format

Share Document