Improvement of Agricultural Life Cycle Assessment Studies through Spatial Differentiation and New Impact Categories: Case Study on Greenhouse Tomato Production

2014 ◽  
Vol 48 (16) ◽  
pp. 9454-9462 ◽  
Author(s):  
Assumpció Antón ◽  
Marta Torrellas ◽  
Montserrat Núñez ◽  
Eva Sevigné ◽  
Maria José Amores ◽  
...  
2020 ◽  
Vol 110 ◽  
pp. 105865 ◽  
Author(s):  
Anders Bjørn ◽  
Sarah Sim ◽  
Anne-Marie Boulay ◽  
Henry King ◽  
Julie Clavreul ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4852
Author(s):  
Diego Guzmán-Soria ◽  
Paul Taboada-González ◽  
Quetzalli Aguilar-Virgen ◽  
Eduardo Baltierra-Trejo ◽  
Liliana Marquez-Benavides

The research on the environmental impacts of corn-derived products has been mainly on cultivation techniques and the production of biofuels, so there is limited information on the impacts produced by the transformation of corn for human consumption. The tortilla is a millennial product derived from corn of which consumption is increasing in North America. The aim of this study is to identify the environmental hotspots of the tortilla using a life cycle assessment (LCA) approach. The process studied included only the corn–nixtamalisation–dough–tortillas production. The functional unit is one kg of tortillas packed in kraft paper. The impacts of the tortilla production process were evaluated using SimaPro 8.5.0 software, considering ReCiPe Midpoint. The production has the greatest impact in 15 of the 18 impact categories. The normalisation reveals that the most significant impacts concentrate in the categories terrestrial acidification (TA), particulate matter formation (PMF), marine ecotoxicity (MET) and fossil fuel depletion (FD). Improvements in the cultivation could mean more environmentally friendly tortilla production.


Author(s):  
Elias Marvinney ◽  
Alissa Kendall

Abstract Purpose California’s Central Valley produces more than 75% of global commercial almond supply, making the life cycle performance of almond production in California of global interest. This article describes the life cycle assessment of California almond production using a Scalable, Process-based, Agronomically Responsive Cropping System Life Cycle Assessment (SPARCS-LCA) model that includes crop responses to orchard management and modeling of California’s water supply and biomass energy infrastructure. Methods A spatially and temporally resolved LCA model was developed to reflect the regional climate, resource, and agronomic conditions across California’s Central Valley by hydrologic subregion (San Joaquin Valley, Sacramento Valley, and Tulare Lake regions). The model couples a LCA framework with region-specific data, including water supply infrastructure and economics, crop productivity response models, and dynamic co-product markets, to characterize the environmental performance of California almonds. Previous LCAs of California almond found that irrigation and management of co-products were most influential in determining life cycle CO2eq emissions and energy intensity of California almond production, and both have experienced extensive changes since previous studies due to drought and changing regulatory conditions, making them a focus of sensitivity and scenario analysis. Results and discussion Results using economic allocation show that 1 kg of hulled, brown-skin almond kernel at post-harvest facility gate causes 1.92 kg CO2eq (GWP100), 50.9 MJ energy use, and 4820 L freshwater use, with regional ranges of 2.0–2.69 kg CO2eq, 42.7–59.4 MJ, and 4540–5150 L, respectively. With a substitution approach for co-product allocation, 1 kg almond kernel results in 1.23 kg CO2eq, 18.05 MJ energy use, and 4804 L freshwater use, with regional ranges of 0.51–1.95 kg CO2eq, 3.68–36.5 MJ, and 4521–5140 L, respectively. Almond freshwater use is comparable with other nut crops in California and globally. Results showed significant variability across subregions. While the San Joaquin Valley performed best in most impact categories, the Tulare Lake region produced the lowest eutrophication impacts. Conclusion While CO2eq and energy intensity of almond production increased over previous estimates, so too did credits to the system for displacement of dairy feed. These changes result from a more comprehensive model scope and improved assumptions, as well as drought-related increases in groundwater depth and associated energy demand, and decreased utilization of biomass residues for energy recovery due to closure of bioenergy plants in California. The variation among different impact categories between subregions and over time highlight the need for spatially and temporally resolved agricultural LCA.


2021 ◽  
Vol 122 ◽  
pp. 107319
Author(s):  
Wei Chen ◽  
Jinglan Hong ◽  
Chengxin Wang ◽  
Lu Sun ◽  
Tianzuo Zhang ◽  
...  

Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


Sign in / Sign up

Export Citation Format

Share Document