scholarly journals A scalable and spatiotemporally resolved agricultural life cycle assessment of California almonds

Author(s):  
Elias Marvinney ◽  
Alissa Kendall

Abstract Purpose California’s Central Valley produces more than 75% of global commercial almond supply, making the life cycle performance of almond production in California of global interest. This article describes the life cycle assessment of California almond production using a Scalable, Process-based, Agronomically Responsive Cropping System Life Cycle Assessment (SPARCS-LCA) model that includes crop responses to orchard management and modeling of California’s water supply and biomass energy infrastructure. Methods A spatially and temporally resolved LCA model was developed to reflect the regional climate, resource, and agronomic conditions across California’s Central Valley by hydrologic subregion (San Joaquin Valley, Sacramento Valley, and Tulare Lake regions). The model couples a LCA framework with region-specific data, including water supply infrastructure and economics, crop productivity response models, and dynamic co-product markets, to characterize the environmental performance of California almonds. Previous LCAs of California almond found that irrigation and management of co-products were most influential in determining life cycle CO2eq emissions and energy intensity of California almond production, and both have experienced extensive changes since previous studies due to drought and changing regulatory conditions, making them a focus of sensitivity and scenario analysis. Results and discussion Results using economic allocation show that 1 kg of hulled, brown-skin almond kernel at post-harvest facility gate causes 1.92 kg CO2eq (GWP100), 50.9 MJ energy use, and 4820 L freshwater use, with regional ranges of 2.0–2.69 kg CO2eq, 42.7–59.4 MJ, and 4540–5150 L, respectively. With a substitution approach for co-product allocation, 1 kg almond kernel results in 1.23 kg CO2eq, 18.05 MJ energy use, and 4804 L freshwater use, with regional ranges of 0.51–1.95 kg CO2eq, 3.68–36.5 MJ, and 4521–5140 L, respectively. Almond freshwater use is comparable with other nut crops in California and globally. Results showed significant variability across subregions. While the San Joaquin Valley performed best in most impact categories, the Tulare Lake region produced the lowest eutrophication impacts. Conclusion While CO2eq and energy intensity of almond production increased over previous estimates, so too did credits to the system for displacement of dairy feed. These changes result from a more comprehensive model scope and improved assumptions, as well as drought-related increases in groundwater depth and associated energy demand, and decreased utilization of biomass residues for energy recovery due to closure of bioenergy plants in California. The variation among different impact categories between subregions and over time highlight the need for spatially and temporally resolved agricultural LCA.

Author(s):  
Hammed Adeniyi Salami

A comparative assessment of environmental impacts associated with the energy use in palm kernel oil production and cashew nut processing industries was carried out using life cycle assessment. One Kg of products from both industries was chosen as the functional unit. The gate – to – gate life cycle assessment results indicated that the total contribution per functional unit to global warming potential (GWP), abiotic depletion potential (ADP) and acidification potential (AP) were 50.2809 g of CO2 equivalents, 0.1524 g antimony equivalents and 0.1280 g of SO2 equivalents respectively for palm kernel oil production and 39.8350 g of CO2 equivalents, 0.1209 g antimony equivalents and 0.0957 g of SO2 equivalents respectively for cashew nut processing. The scenario-based results indicated substantial reductions for all the considered impact  categories; approximately 18, 28 and 94% reductions were achieved for ADP, GWP and AP respectively for both industries when public power supply from the natural grid was the main energy source for agricultural production. Increasing the thermal efficiency of the    nation’s existing power architecture resulted into 62 and 56% reductions for GWP and ADP respectively for the two industries, while additional 6 and 7% reductions were achieved for both impact categories when the transmission and distribution loss was maintained at 5%. The widespread adoption of clean and renewable energy sources, instead of over-reliance on electricity supply from the diesel-powered generator, has been identified as a feasible alternative towards achieving sustainability in the agro-processing industry.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2588 ◽  
Author(s):  
Peter Ylmén ◽  
Diego Peñaloza ◽  
Kristina Mjörnell

Life cycle assessment (LCA) is an established method to assess the various environmental impacts associated with all the stages of a building. The goal of this project was to calculate the environmental releases for a whole office building and investigate the contribution in terms of environmental impact for different parts of the building, as well as the impact from different stages of the life cycle. The construction process was followed up during production and the contractors provided real-time data on the input required in terms of building products, transport, machinery, energy use, etc. The results are presented for five environmental impact categories and, as expected, materials that constitute the main mass of the building and the energy used during operation contribute the largest share of environmental impact. It is usually difficult to evaluate the environmental impact of the materials in technical installations due to the lack of data. However, in this study, the data were provided by the contractors directly involved in the construction and can, therefore, be considered highly reliable. The results show that materials for installations have a significant environmental impact for four of the environmental impact categories studied, which is a noteworthy finding.


2009 ◽  
Vol 9 (4) ◽  
pp. 439-448 ◽  
Author(s):  
E. Lyons ◽  
P. Zhang ◽  
T. Benn ◽  
F. Sharif ◽  
K. Li ◽  
...  

The issues of water supply and management will become more and more critical as the global population increases. In order to meet future demands, water supply systems must be developed to maximize the use of locally available water. It is also important to minimize the impact of water system developments on the environment. In this study, the overall environmental impacts were compared for water importation, reclamation and seawater desalination to address the water scarcity in areas where local supplies are not sufficient. The city of Scottsdale, Arizona was chosen for this study. Life Cycle Assessment (LCA) was performed and it suggests that seawater desalination has the highest impact whereas reclamation shows a relatively lower impact. However, Importation and reclamation systems have comparable results for several damage categories. The impacts of facility operations are significantly higher than the construction phase even when the life-span of infrastructure reduces from 50 year to 10 year. Due to the high impacts associated with the energy use during plant operations, different energy mixes were analyzed for their capabilities to lower the environmental burden.


Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2016 ◽  
Vol 24 ◽  
pp. 531-537 ◽  
Author(s):  
C.P. Sunil Kumar ◽  
S. Parvathi ◽  
R. Rudramoorthy

2016 ◽  
Vol 847 ◽  
pp. 366-373
Author(s):  
Chun Zhi Zhao ◽  
Meng Chi Huang ◽  
Yi Liu ◽  
Li Ping Ma

Plastic pipe is a kind of new pipeline material and its output has been increasing in recent years. It is still mainly used for water supply and drainage of buildings and municipal utility industry as well as for safe drinking in rural areas, about half of all plastic pipelines are used for buildings, and the proportion of these pipelines used in other fields is also increasing. Plastic pipeline system's influence on the environment within its life cycle is the focus of researches in recent years. Based on life cycle assessment (LCA), this paper assesses the common water supply and drainage pipelines (PPR, PE and PVC-U) for buildings for resource and energy consumption, non-renewable resource consumption (ADP) of pollution gas emission, greenhouse effect (GWP), acidification effect (AP) and eutrophication (EP) and inhalable inorganics (RI) generated in the process of life cycle from raw material exploitation to produce production and other environmental influence closely related to the national energy conservation and emission reduction policy. The result shows that the influence indexes of non-renewable resource consumption for functional unit of PPR pipe, PE pipe and PVC-U pipe are 2.22×10-5 Kg antimony eq./ kg, 1.51×10-5 Kg antimony eq./ kg, 6.82×10-6 Kg antimony eq./ kg; those of acidification effect are 1.92×10-2kg SO2 eq./ kg, 1.96×10-2g SO2 eq./ kg, 3.90×10-2kg SO2 eq./ kg; those of eutrophication are 2.39×10-3kg PO43-eq./ kg, 2.36×10-3kg PO43-eq./ kg, 3.40×10-3kg PO43-eq./ kg; those of inhalable inorganics are 6.46×10-3 kg PM2.5 eq./ kg, 6.30×10-3 kg PM2.5 eq./ kg, 1.91×10-2 kg PM2.5 eq./ kg; those of greenhouse effect are 3.72kg CO2 eq./ kg, 3.60kg CO2 eq./ kg, 7.93kg CO2 eq./ kg. This result shows that the environmental influence of PPR, PE and PVC-U pipes mainly depends on the raw materials required for producing pipes, so the key of plastic pipeline greening is to reduce the consumption of virgin resin. This investigation creates a database about plastic pipeline's influence on environment within its full life cycle for the purpose of laying a foundation for calculating intrinsic energy in a building, promoting selection of green building material, facilitating the realization of green building objective, and improving the knowledge of developer, constructor and user to potential influence of the pipeline system within its life cycle.


OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


2019 ◽  
Vol 24 (3) ◽  
pp. 485-499 ◽  
Author(s):  
Alena J. Raymond ◽  
James R. Tipton ◽  
Alissa Kendall ◽  
Jason T. DeJong

Sign in / Sign up

Export Citation Format

Share Document