Electronic Structure Contributions to Electron-Transfer Reactivity in Iron−Sulfur Active Sites:  3. Kinetics of Electron Transfer

2003 ◽  
Vol 42 (3) ◽  
pp. 696-708 ◽  
Author(s):  
Pierre Kennepohl ◽  
Edward I. Solomon
2021 ◽  
Author(s):  
Sheng Li ◽  
Yingxue Cui ◽  
Rong Kang ◽  
Bobo Zou ◽  
Dickon H. L. Ng ◽  
...  

The introduction of oxygen vacancies (OVs) into Nb2O5 can not only provide more active sites for lithium storage, but also change the electronic structure of Nb2O5 to boost electron/ion transport...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1450
Author(s):  
Yanfang Liu ◽  
Yong Li ◽  
Qi Wu ◽  
Zhe Su ◽  
Bin Wang ◽  
...  

Electrolysis of water to produce hydrogen is crucial for developing sustainable clean energy and protecting the environment. However, because of the multi-electron transfer in the oxygen evolution reaction (OER) process, the kinetics of the reaction is seriously hindered. To address this issue, we designed and synthesized hollow CoP/FeP4 heterostructural nanorods interwoven by carbon nanotubes (CoP/FeP4@CNT) via a hydrothermal reaction and a phosphorization process. The CoP/FeP4@CNT hybrid catalyst delivers prominent OER electrochemical performances: it displays a substantially smaller Tafel slope of 48.0 mV dec−1 and a lower overpotential of 301 mV at 10 mA cm−2, compared with an RuO2 commercial catalyst; it also shows good stability over 20 h. The outstanding OER property is mainly attributed to the synergistic coupling between its unique CNT-interwoven hollow nanorod structure and the CoP/FeP4 heterojunction, which can not only guarantee high conductivity and rich active sites, but also greatly facilitate the electron transfer, ion diffusion, and O2 gas release and significantly enhance its electrocatalytic activity. This work offers a facile method to develop transition metal-based phosphide heterostructure electrocatalysts with a unique hierarchical nanostructure for high performance water oxidation.


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


Sign in / Sign up

Export Citation Format

Share Document