Oxygen vacancies boosted the electrochemical kinetics of Nb2O5-x for superior lithium storage

2021 ◽  
Author(s):  
Sheng Li ◽  
Yingxue Cui ◽  
Rong Kang ◽  
Bobo Zou ◽  
Dickon H. L. Ng ◽  
...  

The introduction of oxygen vacancies (OVs) into Nb2O5 can not only provide more active sites for lithium storage, but also change the electronic structure of Nb2O5 to boost electron/ion transport...

2022 ◽  
Author(s):  
Venugopal Boya ◽  
Pratheeksha Parakandy Muzhikara ◽  
Bayikadi Khasimsaheb ◽  
Pavan Srinivas Veluri ◽  
M. Ramakrishna ◽  
...  

Herein, we report the synthesis, characterization and electrochemical performance of carbon coated mesoporous SnO2 nanoparticles (NPs) prepared by adopting a simple hydrothermal process. BET analysis shows that the SnO2 formed...


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


1981 ◽  
Vol 46 (7) ◽  
pp. 1577-1587 ◽  
Author(s):  
Karel Jeřábek

Catalytic activity of ion exchangers prepared by partial sulphonation of styrene-divinylbenzene copolymers in reesterifications of ethyl acetate by methanol and propanol, hydrolysis of ethyl acetate and in synthesis of bisphenol A has been compared with data on polymer structure of these catalysts and with distribution of the crosslinking agent, divinylbenzene, calculated from literature data on kinetics of copolymerisation of styrene with divinylbenzene. It was found that the polymer structure of ion exchangers influences catalytic activity predominantly by changing the local concentration of acid active sites. The results obtained indicated that the effect of transport phenomena on the rate of catalytic reactions does not depend on the degree of swelling of the ion exchangers in reaction medium but it is mainly dependent on the relative affinity of reaction components to the acid groups or to the polymer skeleton.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


2021 ◽  
pp. 2101712
Author(s):  
Yingying Zhang ◽  
Peng Chen ◽  
Qingyu Wang ◽  
Qian Wang ◽  
Kai Zhu ◽  
...  

2007 ◽  
Vol 111 (37) ◽  
pp. 13957-13966 ◽  
Author(s):  
Emma I. Rogers ◽  
Debbie S. Silvester ◽  
Sarah E. Ward Jones ◽  
Leigh Aldous ◽  
Christopher Hardacre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document