Product distributions in the carbon dioxide-ammonia-water system from liquid conductivity measurements

1992 ◽  
Vol 31 (9) ◽  
pp. 2209-2215 ◽  
Author(s):  
James E. Pelkie ◽  
P. John Concannon ◽  
David B. Manley ◽  
Bruce E. Poling
2014 ◽  
Vol 70 (a1) ◽  
pp. C900-C900
Author(s):  
J. Loveday ◽  
C. Bull ◽  
A. Frantzana ◽  
C. Wilson ◽  
D. Amos ◽  
...  

The behaviour of gas hydrates at high pressure is of wide interest and importance. Gas hydrates are stablised by water-gas repulsive interactions. Information on the effect of changing density on these water-gas interactions provides fundamental insight into the nature of the water potential. Gas hydrates are also widely found in nature and systems like the ammonia-water and methane-water systems form the basis of 'mineralogy' of planetary bodies like Saturn's moon Titan. Finally, gas hydrates offer the possibility of cheap environmentally inert transportation and storage for gases like carbon dioxide and hydrogen. We have been carrying out investigations of a range of gas hydrates at high pressure using neutron and x-ray diffraction as well as other techniques. Results from these studies including; the phase diagram of the ammonia water system, the occupancies of hexgonal clathrate structures, and new structures in the carbon dioxide water system, will be presented.


2001 ◽  
Vol 46 (2) ◽  
pp. 381-384 ◽  
Author(s):  
Yu-Taek Seo ◽  
Huen Lee ◽  
Ji-Ho Yoon

2006 ◽  
Vol 129 (3) ◽  
pp. 254-265 ◽  
Author(s):  
Na Zhang ◽  
Noam Lior

Cogeneration can improve energy utilization efficiency significantly. In this paper, a new ammonia-water system is proposed for the cogeneration of refrigeration and power. The plant operates in a parallel combined cycle mode with an ammonia-water Rankine cycle and an ammonia refrigeration cycle, interconnected by absorption, separation, and heat transfer processes. The performance was evaluated by both energy and exergy efficiencies, with the latter providing good guidance for system improvement. The influences of the key parameters, which include the basic working solution concentration, the cooling water temperature, and the Rankine cycle turbine inlet parameters on the cycle performance, have been investigated. It is found that the cycle has a good thermal performance, with energy and exergy efficiencies of 27.7% and 55.7%, respectively, for the base-case studied (having a maximum cycle temperature of 450°C). Comparison with the conventional separate generation of power and refrigeration having the same outputs shows that the energy consumption of the cogeneration cycle is markedly lower. A brief review of desirable properties of fluid pairs for such cogeneration cycles was made, and detailed studies for finding new fluid pairs and the impact of their properties on cogeneration system performance are absent and are very recommended.


2002 ◽  
Vol 19 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Ki-Bong Lee ◽  
Byung-Hee Chun ◽  
Jae-Cheol Lee ◽  
Chan-Jin Park ◽  
Sung-Hyun Kim

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122332
Author(s):  
Yafan Yang ◽  
Arun Kumar Narayanan Nair ◽  
Mohd Fuad Anwari Che Ruslan ◽  
Shuyu Sun

Author(s):  
Austin Michael Wallace ◽  
Ryan C. Fortenberry

Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished with current high-level...


2020 ◽  
Vol 124 (43) ◽  
pp. 9556-9569
Author(s):  
Yafan Yang ◽  
Arun Kumar Narayanan Nair ◽  
Mohd Fuad Anwari Che Ruslan ◽  
Shuyu Sun

2006 ◽  
Vol 61 (12) ◽  
pp. 1573-1576 ◽  
Author(s):  
Alexander Kurnosov ◽  
Leonid Dubrovinsky ◽  
Alexei Kuznetsov ◽  
Vladimir Dmitriev

Melting phase relations in the methane-ammonia-water system up to 3 GPa have been obtained in a series of in situ experiments in externally heated diamond anvil cells. The melting temperature of methane clathrate hydrates increases rapidly above pressures of ~ 1.5 GPa, and does not appear to be significantly affected by the presence of ammonia. The reaction of the hydrate formation at pressures 2 - 3 GPa is kinetically impeded. Our data show that the high-pressure methane hydrate has the maximum melting temperature among the clathrate hydrates studied so far.


Sign in / Sign up

Export Citation Format

Share Document