Hartree-Fock-Slater linear combination of atomic orbital calculations of the valence electron distribution in neutral and charged iridium clusters

1989 ◽  
Vol 93 (17) ◽  
pp. 6445-6447 ◽  
Author(s):  
W. Ravenek ◽  
A. P. J. Jansen ◽  
R. A. Van Santen
2013 ◽  
Vol 209 ◽  
pp. 143-146
Author(s):  
K.C. Bhamu ◽  
Arvind Sharma ◽  
Asvin R. Jani ◽  
B.L. Ahuja

Abstract. We report the Compton profiles of tantalum chalcogenides (TaS2 and TaSSe) using Hartree–Fock and hybridization of Hartree–Fock and density functional theories within linear combination of atomic (Gaussian) orbitals. To interpret the theoretical data on Compton line shapes, we have measured the Compton profiles using our in-house 100 mCi 241Am γ-ray Compton spectrometer. To understand the relative nature of bonding, we have obtained the equal-valence-electron-density (EVED) profiles. The EVED profiles shows that charge in TaSSe is more localized than TaS2 in the bonding direction which confirms that TaSSe is more covalent than TaS2, which is in agreement with the Mulliken’s population analysis.


Author(s):  
J. Taft∅

It is well known that for reflections corresponding to large interplanar spacings (i.e., sin θ/λ small), the electron scattering amplitude, f, is sensitive to the ionicity and to the charge distribution around the atoms. We have used this in order to obtain information about the charge distribution in FeTi, which is a candidate for storage of hydrogen. Our goal is to study the changes in electron distribution in the presence of hydrogen, and also the ionicity of hydrogen in metals, but so far our study has been limited to pure FeTi. FeTi has the CsCl structure and thus Fe and Ti scatter with a phase difference of π into the 100-ref lections. Because Fe (Z = 26) is higher in the periodic system than Ti (Z = 22), an immediate “guess” would be that Fe has a larger scattering amplitude than Ti. However, relativistic Hartree-Fock calculations show that the opposite is the case for the 100-reflection. An explanation for this may be sought in the stronger localization of the d-electrons of the first row transition elements when moving to the right in the periodic table. The tabulated difference between fTi (100) and ffe (100) is small, however, and based on the values of the scattering amplitude for isolated atoms, the kinematical intensity of the 100-reflection is only 5.10-4 of the intensity of the 200-reflection.


1970 ◽  
Vol 48 (20) ◽  
pp. 3154-3163 ◽  
Author(s):  
François Tonnard ◽  
Simone Odiot ◽  
Maryvonne L. Martin

A relation between the diamagnetic term for a proton bonded to a carbon atom and the linear combination of atomic orbital charges on C and H is established. Proton diamagnetic terms of some vinyl ethers are calculated, and the conformation of ethoxy group in these molecules studied.


2010 ◽  
Vol 7 (3) ◽  
pp. 260-272
Author(s):  
M. Monajjemi ◽  
A. Nouri ◽  
H. Monajemi

The hydrogen bonding effects that were produced from interaction of membrane lipid dipalmitoylphosphatidyl-ethanolamine (DPPE) with 1-5 water molecules, has been theoretically  investigated through the quantum mechanical calculations at the Hartree-Fock level of theory and the 3-21G, 6-31G and 6-31G* basis sets with the computational package of Gaussian 98. According to the obtained results of the structural optimization of the isolated DPPE in the gas phase, we can see the evidences of interactions in the head group of this macromolecule (from the molecular point of view we have a proton transfer from the ammonium group to the phosphate oxygen of zwitterionic form. As we know that the hydrogen bonding of DPPE with water molecules which have surrounded its head group plays an important role in the permeability of DPPE. So, in order to understand the microscopic physico-chemical nature of this subject we have analyzed bond and torsion angles of DPPE before and after added water molecules.  In this paper we have theoretically studied the complexes DPPE with water molecules which have surrounded its head group. As mentioned before, this theoretically study has been done through Hartree-Fock level of theory by using simple basis sets. Theoretical data shows that the interaction of head group of DPPE with water molecules causes some changes in the geometry of DPPE which were explained by the contribution of zwitterionic form of DPPE macromolecule, and finally hydrated DPPE becomes stable complex. Comparison between theoretical and experimental geometry data of DPPE macromolecule shows that the calculation at the HF/3-21 level of theory produces results which they are in better agreement with the experimental data. Moreover the hydrogen bonding effects on the NMR shielding tensor of selected atoms in the hydrated complexes of DPPE were reported. The ";Gauge Including Atomic Orbitals"; (GIAO) approaches within the SCF-Hartree-Fock approximation have been used in order to investigate the influence of hydrogen bonding of DPPE-water complex on the shielding tensors. Finally, the solvent affects on the stability of DPPE macromolecule, dipole moment and atomic charge of some selected atoms of DPPE molecule was discussed using Onsager model and Merz-Singh-Kolman schema.   Keywords  : Gauge Including Atomic Orbital, DPPE, hydrogen bonding, solvation, quantum mechanics, ab initio


1985 ◽  
Vol 63 (7) ◽  
pp. 1609-1615 ◽  
Author(s):  
Michael W. Schmidt ◽  
Mark S. Gordon

The nature of binding in the 14 valence electron H3AB molecules is examined, where A and B are taken from the second and third rows. The AB bonding is inferred from the computed structures, d orbital populations, and localized orbitals. Near Hartree–Fock results are reported for the strongest bonding compounds, which are those with third row atoms A, and second row atoms B. Phosphine oxide, and to a lesser extent phosphine sulfide, are found to be effectively doubly bound. Amine oxide and sulfide are found to be ionic complexes. The thiazyl bond is confirmed as triple in nature. The exotic compound F3IC is proposed as a synthetic target.


Author(s):  
Jochen Autschbach

It is shown how an aufbau principle for atoms arises from the Hartree-Fock (HF) treatment with increasing numbers of electrons. The Slater screening rules are introduced. The HF equations for general molecules are not separable in the spatial variables. This requires another approximation, such as the linear combination of atomic orbitals (LCAO) molecular orbital method. The orbitals of molecules are represented in a basis set of known functions, for example atomic orbital (AO)-like functions or plane waves. The HF equation then becomes a generalized matrix pseudo-eigenvalue problem. Solutions are obtained for the hydrogen molecule ion and H2 with a minimal AO basis. The Slater rule for 1s shells is rationalized via the optimal exponent in a minimal 1s basis. The nature of the chemical bond, and specifically the role of the kinetic energy in covalent bonding, are discussed in details with the example of the hydrogen molecule ion.


2013 ◽  
Vol 91 (9) ◽  
pp. 744-750 ◽  
Author(s):  
Dhanoj Gupta ◽  
Rahla Naghma ◽  
Bobby Antony

Calculation of electron impact total and ionization cross sections for Sr, Y, Ru, Pd, and Ag atoms were performed using spherical complex optical potential and complex scattering potential-ionization contribution methods. The complex optical potential model is formulated from the target parameters and the atomic charge density. The spherical charge densities are in turn derived from the Roothaan–Hartree–Fock wavefunctions defining the atomic orbital of the target. In the present study cross sections are computed in the energy range from ionization threshold to 2000 eV. The results obtained are compared with other theories and measurements wherever available and were found to be quite consistent and uniform. In general, present data show an overall reasonable agreement with other results. Dependence of total cross sections on the number of target electrons and peak of ionization cross section on target parameters were also found to be consistent with previous observations.


Sign in / Sign up

Export Citation Format

Share Document