Kinetics of particle growth. III. Particle formation in the photolysis of sulfur dioxide-acetylene mixtures

1974 ◽  
Vol 78 (4) ◽  
pp. 325-335 ◽  
Author(s):  
Menachem Luria ◽  
Rosa G. De Pena ◽  
Kenneth J. Olszyna ◽  
Julian Heicklen
1974 ◽  
Vol 5 (5) ◽  
pp. 435-447 ◽  
Author(s):  
Menachem Luria ◽  
Kenneth J. Olszyna ◽  
Rosa G. de Pena ◽  
Julian Heicklen

1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


Langmuir ◽  
2002 ◽  
Vol 18 (8) ◽  
pp. 3027-3033 ◽  
Author(s):  
Wolfram Vogelsberger ◽  
Andreas Seidel ◽  
Tilo Breyer

2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2016 ◽  
Author(s):  
Mikhail A. Zatevakhin ◽  
Valentin K. Arefiev ◽  
Sergey E. Semashko ◽  
Rostislav A. Dolganov

Sign in / Sign up

Export Citation Format

Share Document