Temperature dependence of contact angle and of interfacial free energies in the naphthalene-water-air system. Comments

1968 ◽  
Vol 72 (6) ◽  
pp. 2283-2284 ◽  
Author(s):  
J. A. Lavelle
Author(s):  
Dong-Lei Zeng ◽  
Biao Feng ◽  
Jia-Wen Song ◽  
Li-Wu Fan

Abstract Temperature-dependent wettability of water droplets on a metal surface in a pressurized environment is of great theoretical and practical significance. In this paper, molecular dynamic simulation is used to study this problem by relating the temperature-dependent apparent contact angles to the changes in solid-liquid and solid-vapor interfacial free energies and hydrogen bonds in the nano-sized water droplets with increasing the temperature. The temperature range of interest is set from 298 K to 538 K in a 20 K interval under a constant pressure of 7 MPa. The results show that the contact angle in general decreases with raising the temperature and decreasing trend can be divided into two sections with different slopes. The contact angle drops slowly when the temperature is below 458 K as a critical point. Beyond this point, the contact angle shows a much steeper decrease. The difference between solid-vapor and solid-liquid interfacial free energies is found to decrease slightly with temperature. Combining with that the surface tension drops with increasing the temperature, a decreasing trend of the contact angle is expected according to the Young’s equation. As the temperature increases, the number and average energy of the hydrogen bonds both decrease, and the hydrogen bonds tend to aggregate at the bottom of the nano-droplets.


2004 ◽  
Vol 69 (2) ◽  
Author(s):  
D. Y. Sun ◽  
M. Asta ◽  
J. J. Hoyt ◽  
M. I. Mendelev ◽  
D. J. Srolovitz

2003 ◽  
Vol 10 (05) ◽  
pp. 763-769 ◽  
Author(s):  
Bing An ◽  
Tong-Jun Zhang ◽  
Chao Yuan ◽  
Kun Cui

Biaxial zero creep experiments based on the Josell model were performed on Ag/Fe multilayer thin films to determine their interfacial free energies. Various multilayer samples on stiff wafers prepared by RF magnetron sputtering were subjected to annealing of long duration at 550°C, while a substrate curvature technique was employed for real-time film stress monitoring. Sufficient plastic flow in films makes possible a zero creep equilibrium state to present during this isothermal process, and as a result the interfacial free energies in multilayer interfaces are equilibrated with the elastic strain energies arising from the substrate bending. There is no collapse in the annealed multilayer structures. They are still stably layer-built and exhibit a column grain distribution. XRD results show that Ag and Fe layers have (111) and (110) preferred orientations, respectively. In accordance with a revised Josell model, the equilibrium stresses were measured and the Ag (111)/ Fe (110) interface free energy at 550°C was found to be 0.97 ± 0.13 J/m 2.


Sign in / Sign up

Export Citation Format

Share Document