isothermal process
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2020 ◽  
pp. 26-31
Author(s):  
Yulia Bakhracheva ◽  

In this paper we investigate the nature of the impact fracture of steels 20 and 20Cr specimens in the nitrocarburized layer and in the core. The object of the study were the samples after thermocycling and isothermal nitrocarburizing. As the results showed, the greatest increase in impact ductility is achieved in five cycles of nitrocarburizing. It is shown that the destruction of the hardened layer and the steel core after the isothermal process is quasirectangular in nature. The presence of the diffusion layer treated by modes of thermocycling nitrocarburizing, areas of ductile fracture and quasi-cleavage in the fracture indicates greater intensity of the process of destruction in comparison with the isothermal process, in which areas of intergranular fracture are present and ductile fracture elements are not present in the fracture. Thus, the fractographic study revealed some features of the mechanism of steel destruction after chemical-thermal nitrocarburizing in comparison with the isothermal process. During thermal cycling of steels, a large amount of the ductile component is observed in the fracture. As the results showed, the greatest increase in impact ductility is achieved in five cycles. In steel 20Cr, the impact ductility increases by 2 times, and in steel 20 by 2.6 times. Increasing the number of cycles to 9 leads to a significant reduction in impact ductility. So in steel 20Cr after chemical-thermal nitrocarburizing, the impact ductility values become less than after classical processing. A further increase in the number of cycles leads to an even greater decrease in the impact ductility values.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2571
Author(s):  
Ruijun Zhao ◽  
Zhaozhe Chu ◽  
Zhe Ma

The flow-induced formation and relaxation of the representative oriented shish-kebab structure were studied with synchrotron small-angle X-ray scattering (SAXS) method. The flow duration was varied from 2 to 6 s at an identical strain rate to reveal the effect of flow time on stability and dimension of formed shish. It was found that the short flow time of 2 s was able to generate shish during flow, which, however, relaxed during the isothermal process after cessation of flow. An increase in flow time can improve the shish stability and the long flow time of 6 s can generate the stable shish that nucleate the growth of kebab lamellae. In addition, the quantitative analysis of SAXS results showed that with increasing flow time from 2 to 6 s, the shish length increased from 242 to 574 nm, while the shish diameter remained around 34 nm. This detailed information of the formed shish-kebab structure can be used to shed light on their evolution that occurred during flow from 2 to 6 s, where shish grew at a longitudinal speed of around 80 nm/s, and there was an improvement in the stability and nucleation capability for kebab lamellae.


2020 ◽  
Vol 34 (33) ◽  
pp. 2050385
Author(s):  
Ye Wang ◽  
Maoliang Hu ◽  
Hongyu Xu ◽  
Zesheng Ji ◽  
Xuefeng Wen ◽  
...  

A typical Al–Cu–Mn–Ti aluminum alloy chip was adopted to prepare semi-solid billets by a Strain-Induced Melt Activation (SIMA) method, and the effects of isothermal process parameters on the semi-solid microstructure evolution of the alloy were investigated in this work. The result showed that semi-solid billets with highly spheroidal and homogeneous fine grains could be prepared from chips by the SIMA method. With the increase of isothermal temperature, the finer and near-spherical grains are obtained, the grains coarsen and became ellipse at 903 K because of the coarsening mechanisms of coalescence and Ostwald ripening. The relationship of isothermal holding time and grains size followed the LSW theory well, and more spherical microstructure can be brought by prolonging the holding time until 3000 s. Thus, the optimal isothermal treatment temperature is 893 K and holding time is 3000 s, the corresponding average size and roundness of grains are 137 [Formula: see text]m and 1.108, respectively.


2019 ◽  
Vol 38 (11) ◽  
pp. 1400-1410 ◽  
Author(s):  
Qianwei He ◽  
Changjun Li ◽  
Ju Xue ◽  
Jianhong Chen

2019 ◽  
pp. 27-29 ◽  
Author(s):  
A. V. Вaranov

The steady-state non-isothermal process of viscoelastic fl at polymer fi lm casting is considered. The polymer melt is extruded through a fl at die, subjected to uniaxial stretching and at the same time air cooling, and then fi nally cooled down on a chill roll. It is assumed that the fi lm is wide enough, the distance between the extruder die and the cooling roller is minimal to such an extent that it is possible to neglect change of width of a fi lm in the course of longitudinal stretching. It is also believed that the forces of gravity, inertia and surface tension can be ignored. From a rheological standpoint, polymer melt is the viscoelastic fl uid. The upper-convective Maxwell model with temperature-dependent viscosity is used. The problem is solved by a numerical method of fi nite diff erences.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1358
Author(s):  
Zhang ◽  
Fan ◽  
Yu ◽  
Zhang ◽  
Lv ◽  
...  

The mathematical model of vacuum breaker valve is significant to the protection scheme. The more accurate the vacuum breaker valve model, the more reliable the calculation results. In this study, the application conditions of the air valve model are analyzed according to the assumptions used in the derivation, and the contradictions between these assumptions are proposed. Then, according to the different working characteristics between the vacuum breaker valve on the siphon outlet pipe and the air valve, the vacuum breaker valve model is deduced based on the modified assumptions. In the derivation process, the thermodynamic change of the gas in the vacuum breaker valve is assumed to follow the isentropic process rather than an isothermal process, and the water level in the vacuum breaker valve is considered to be changeable. An engineering case is introduced, and the results calculated according to the vacuum breaker valve model are compared with those resulting from the air valve model. The results indicate that the vacuum breaker valve model is suitable for large air mass conditions and can provide a theoretical basis for the numerical simulation and settings of vacuum breaker valves.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2403 ◽  
Author(s):  
Feng Wang ◽  
Dong-Sheng Qian ◽  
Peng Xiao ◽  
Song Deng

In this work, the non-isothermal process of GCr15 bearing steel after quenching and tempering (QT) under different tensile stress (0, 20, 40 MPa) was investigated by kinetic analysis and microstructural observation. The Kissinger method and differential isoconversional method were employed to assess the kinetic parameters of the microstructural evolution during the non-isothermal process with and without applied stress. It is found that the activation energy of retained austenite decomposition slightly increases from 109.4 kJ/mol to 121.5 kJ/mol with the increase of tensile stress. However, the activation energy of cementite precipitation decreases from 179.4 kJ/mol to 94.7 kJ/mol, proving that tensile stress could reduce the energy barrier of cementite precipitation. In addition, the microstructural observation based on scanning and transmission electron microscopy (SEM and TEM) shows that more cementite has formed for the specimens with the applied tensile stress, whereas there is still a large number of ε carbides existing in the specimens without stress. The results of X-ray diffraction (XRD) also verify that carbon in martensite diffuses more and participates in the formation of cementite under the applied tensile stress, which thus are in good agreement with the kinetic analysis. The mechanisms for the differences in cementite precipitation behaviors may lie in the acceleration of carbon atoms migration and the reduction of the nucleation barrier by applying tensile stress.


2018 ◽  
Vol 58 (10) ◽  
pp. 1875-1882 ◽  
Author(s):  
Junyu Tian ◽  
Guang Xu ◽  
Zhengyi Jiang ◽  
Mingxing Zhou ◽  
Haijiang Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document