Theoretical investigation on base-induced 1,2-eliminations in the model system fluoride ion + fluoroethane. The role of the base as a catalyst

1993 ◽  
Vol 115 (20) ◽  
pp. 9160-9173 ◽  
Author(s):  
F. Matthias Bickelhaupt ◽  
Evert Jan Baerends ◽  
Nico M. M. Nibbering ◽  
Tom Ziegler
2021 ◽  
Vol 45 (4) ◽  
pp. 2249-2263
Author(s):  
Pretam Kumar ◽  
Snehasis Banerjee ◽  
Anu Radha ◽  
Tahira Firdoos ◽  
Subash Chandra Sahoo ◽  
...  

The H-bond, spodium bond and CH⋯π interactions playing an important role in the supramolecular organization of two mercury(ii) diphenyldithiophosphate complexes have been discussed.


1998 ◽  
Vol 9 (7) ◽  
pp. 1803-1816 ◽  
Author(s):  
Michael C. Brown ◽  
Joseph A. Perrotta ◽  
Christopher E. Turner

We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.


2005 ◽  
Vol 119 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Gerrit T. S. Beemster ◽  
Steven Vercruysse ◽  
Lieven De Veylder ◽  
Martin Kuiper ◽  
Dirk Inzé

2013 ◽  
Vol 108 ◽  
pp. 110-119 ◽  
Author(s):  
Guillermo Orts-Gil ◽  
Kishore Natte ◽  
Raphael Thiermann ◽  
Matthias Girod ◽  
Steffi Rades ◽  
...  

1987 ◽  
Vol 87 (2) ◽  
pp. 357-362
Author(s):  
J. Gavrilovic ◽  
R.M. Hembry ◽  
J.J. Reynolds ◽  
G. Murphy

A specific antiserum to purified rabbit tissue inhibitor of metalloproteinases (TIMP) was raised in sheep, characterized and used to investigate the role of TIMP in a model system. Chondrocytes and endothelial cells cultured on 14C-labelled type I collagen films and stimulated to produce collagenase were unable to degrade the films unless the anti-TIMP antibody was added. The degradation induced was inhibited by a specific anti-rabbit collagenase antibody. It was concluded that TIMP is a major regulatory factor in cell-mediated collagen degradation.


Sign in / Sign up

Export Citation Format

Share Document