Novel photoinduced carbon-carbon bond formation via metal-alkyl and -enolate porphyrins-visible light-mediated polymerization of alkyl methacrylate catalyzed by aluminum porphyrin

1987 ◽  
Vol 109 (15) ◽  
pp. 4737-4738 ◽  
Author(s):  
Masakatsu Kuroki ◽  
Takuzo Aida ◽  
Shohei Inoue
2019 ◽  
Vol 10 (6) ◽  
pp. 1687-1691 ◽  
Author(s):  
Mrinmoy Das ◽  
Minh Duy Vu ◽  
Qi Zhang ◽  
Xue-Wei Liu

Phosphonium ylides have shown their synthetic usefulness in important carbon–carbon bond formation processes. Our new strategy employs phosphonium ylides as novel carbyne equivalents and features a new approach for constructing carbon–carbon bonds from alkenes.


2013 ◽  
Vol 91 (5) ◽  
pp. 348-351 ◽  
Author(s):  
Suresh B. Waghmode ◽  
Sudhir S. Arbuj ◽  
Bina N. Wani ◽  
C.S. Gopinath

PdCl2 catalyzed carbon–carbon bond formation (Heck reaction) between substituted aryl halides and olefins was carried out without a ligand, under irradiation with UV–visible light. The results demonstrated that UV–visible light accelerated the rate of the reaction, leading to an excellent yield of corresponding products. The recovered palladium nanoparticles could be thermally recycled several times. PdCl2 gave excellent conversion up to the fifth addition of substrate.


2014 ◽  
Vol 1 (5) ◽  
pp. 551 ◽  
Author(s):  
Marion Daniel ◽  
Louis Fensterbank ◽  
Jean-Philippe Goddard ◽  
Cyril Ollivier

2020 ◽  
Vol 4 (11) ◽  
pp. 5488-5492
Author(s):  
Peng Bai ◽  
Xinli Tong ◽  
Yiqi Gao ◽  
Song Xue

A green and sustainable production of vicinal diols via the photocatalytic radical coupling of benzylic alcohols has been developed under visible light irradiation.


2018 ◽  
Vol 90 (11) ◽  
pp. 1723-1733 ◽  
Author(s):  
Takayuki Katagiri ◽  
Kohei Fujita ◽  
Shusaku Ikeyama ◽  
Yutaka Amao

Abstract From the view point of green chemistry, CO2 utilization technologies with solar energy including the photoredox system have been received a lot of attention. As one of them, photoredox system containing a photosensitizer and a catalyst catalyzing a reaction of a carbon–carbon bond formation from CO2 as a feed stock were constructed. In a recent study, we reported the visible light-induced malate (C4 compound) production from pyruvate (C3 compound) and CO2 due to carbon–carbon bond formation with the system consisting an electron donor, a photosensitizer, diphenylviologen (PV2+) derivative as an electron mediator in the presence of malic enzyme (ME). However, the interaction between a photosensitizer and PV2+ derivative has not been clarified yet. In this study, water-soluble PV2+ derivative, 1,1′-bis(p-sulfonatophenyl)-4,4′-bipyridinium salt (PSV2+) was synthesized, and its electro-, photochemical properties were evaluated. Moreover, the photoredox properties of PSV2+ with water-soluble Zn porphyrin were studied using fluorescence spectroscopy and steady state irradiation. The fluorescence of Zn porphyrin was quenched by PSV2+ and the two-electron reduced form of PSV2+ were produced with Zn porphyrin with steady state irradiation. In addition, reaction solution containing triethanolamine, tetraphenylporphyrin tetrasulfonate, pyruvate, ME, Mg2+ and PSV2+ in CO2 saturated bis-tris buffer (pH 7.4) was irradiated with visible light, the oxaloacetate and malate were produced. This result indicates that PSV2+ is an efficient electron mediator in the visible light-induced redox system for carbon–carbon bond formation with ME from CO2 as a feedstock.


ACS Catalysis ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 11277-11286 ◽  
Author(s):  
Yik Yie Ng ◽  
Lisa Jiaying Tan ◽  
Shue Mei Ng ◽  
Yoke Tin Chai ◽  
Rakesh Ganguly ◽  
...  

2017 ◽  
Vol 198 ◽  
pp. 73-81 ◽  
Author(s):  
Yutaka Amao ◽  
Shusaku Ikeyama ◽  
Takayuki Katagiri ◽  
Kohei Fujita

Recently, CO2 utilization technology, including artificial photosynthesis, has received much attention. In this field, CO2 is used as a feedstock for fuels, polymers and in other chemical processes. Of note are malic enzymes (MEs) which catalyze the reaction of malic acid to pyruvic acid and CO2 with the co-enzyme NADP+, and catalyze the reverse reaction of pyruvic acid and CO2 to malic acid with the co-enzyme NADPH. Thus, MEs are also an attractive biocatalyst for carbon–carbon bond formation from CO2. Studies of the visible light-induced malic acid production from pyruvic acid and CO2 using an electron donor, a photosensitizer, an electron mediator, ferredoxin-NADP+ reductase, NADP+, and ME have been reported. However, modification of these systems is required, as they are very complicated. In this study, the visible light-induced carbon–carbon bond formation from pyruvic acid and CO2 with ME using the photoreduction of 1,1′-diphenyl-4,4′-bipyridinium salt derivatives as a novel electron mediator with water-soluble tetraphenylporphyrin tetrasulfonate (H2TPPS) in the presence of triethanolamine (TEOA) as an electron donor was developed. When a sample solution containing TEOA, H2TPPS, 1,1′-diphenyl-4,4′-bipyridinium salt derivative, pyruvic acid, and ME in CO2-saturated bis–tris buffer was irradiated, the major product was oxaloacetic acid. Thus, a visible light-induced photoredox system for carbon–carbon bond formation from CO2 with ME using 1,1′-diphenyl-4,4′-bipyridinium salt derivative as an electron mediator was developed.


2018 ◽  
Author(s):  
Mohit Kapoor ◽  
Pratibha Chand-Thakuri ◽  
Michael Young

Carbon-carbon bond formation by transition metal-catalyzed C–H activation has become an important strategy to fabricate new bonds in a rapid fashion. Despite the pharmacological importance of <i>ortho</i>-arylbenzylamines, however, effective <i>ortho</i>-C–C bond formation from C–H bond activation of free primary and secondary benzylamines using Pd<sup>II</sup> remains an outstanding challenge. Presented herein is a new strategy for constructing <i>ortho</i>-arylated primary and secondary benzylamines mediated by carbon dioxide (CO<sub>2</sub>). The use of CO<sub>2</sub> is critical to allowing this transformation to proceed under milder conditions than previously reported, and that are necessary to furnish free amine products that can be directly used or elaborated without the need for deprotection. In cases where diarylation is possible, a chelate effect is demonstrated to facilitate selective monoarylation.


Sign in / Sign up

Export Citation Format

Share Document