The Kinetics of the Thermal Decomposition of Gaseous Methyl Ethyl Ketone1a

1948 ◽  
Vol 70 (12) ◽  
pp. 4073-4081 ◽  
Author(s):  
Chas. E. Waring ◽  
Walter E. Mutter
1967 ◽  
Vol 53 (7) ◽  
pp. 740-743 ◽  
Author(s):  
Kiyoshi SAWAMURA ◽  
Kazuichi MIZOGUCHI ◽  
Tetsuro HANADA ◽  
Kunihiko MAKINO

2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


2019 ◽  
Author(s):  
Milad Narimani ◽  
Gabriel da Silva

Glyphosate (GP) is a widely used herbicide worldwide, yet accumulation of GP and its main byproduct, aminomethylphosphonic acid (AMPA), in soil and water has raised concerns about its potential effects to human health. Thermal treatment processes are one option for decontaminating material containing GP and AMPA, yet the thermal decomposition chemistry of these compounds remains poorly understood. Here, we have revealed the thermal decomposition mechanism of GP and AMPA by applying computational chemistry and reaction rate theory methods. <br>


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


1995 ◽  
Vol 20 (2) ◽  
pp. 91-95 ◽  
Author(s):  
S. C. Mishra ◽  
Jyotsna Pant ◽  
G. C. Pant ◽  
P. K. Dutta ◽  
U. C. Durgapal

2020 ◽  
Vol 394 (1) ◽  
pp. 2000156
Author(s):  
Marcos V. Ferreira ◽  
Lauro A. Pradela Filho ◽  
Regina M. Takeuchi ◽  
Rosana M. N. Assunção

Sign in / Sign up

Export Citation Format

Share Document