Structure of the Oxygen-Rich Cluster Cation Al2O7+and its Reactivity toward Methane and Water

2011 ◽  
Vol 133 (42) ◽  
pp. 16930-16937 ◽  
Author(s):  
Zhe-Chen Wang ◽  
Thomas Weiske ◽  
Robert Kretschmer ◽  
Maria Schlangen ◽  
Martin Kaupp ◽  
...  
Keyword(s):  
2014 ◽  
Vol 10 (S313) ◽  
pp. 260-265
Author(s):  
D. M. Worrall ◽  
M. Birkinshaw

AbstractMost X-ray studies of radio-mode feedback have concentrated on locally-abundant low-power radio sources in relatively rich cluster environments. But the scaling found between mechanical and radiative power, when combined with the radio luminosity function, means that half of the heating in the local Universe is expected from higher-power sources, which lie within a factor of about three of the FRI/II transition, and these sources encounter a wide range of atmosphere properties. We summarize what is observed at FRI/II transition powers from a complete sample observed with modest Chandra exposure times. We then discuss two systems with deep Chandra data. In one we find that the work done in driving shocks exceeds that in evacuating cavities. This source also displays a remarkable jet-cloud interaction, and revealing hotspot X-ray emission. In the second we find evidence of radio-emitting plasma running along boundaries between gas of different temperature, apparently lubricating the gas flows and inhibiting heat transfer, and itself being heavily structured by the process.


1991 ◽  
Vol 249 (1) ◽  
pp. 184-190 ◽  
Author(s):  
Richard Ellis ◽  
Jeremy Allington-Smith ◽  
Ian Smail
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hiroto Tachikawa ◽  
Ryoshu Iura ◽  
Hiroshi Kawabata
Keyword(s):  

1980 ◽  
Vol 92 ◽  
pp. 107-117 ◽  
Author(s):  
Ray J. Weymann

A classification scheme for QSO absorption line spectra is described which ascribes the origin of the lines to at least four mechanisms: (A) Explosive ejection of material at speeds up to 0.1 c. (B) Absorption by highly ionized material moving in a rich cluster in which the QSO is embedded. (C-1) Cosmologically distant intervening material with ‘normal’ abundances, probably associated with large galactic halos. (C-2) Cosmologically distant intervening material consisting of primordial uncondensed gas. Examples of each type of spectra are given and their ionization and other spectral characteristics discussed. The similarity between the development of novae spectra and a possible evolutionary sequence of the explosive ejecta of type A is striking and suggestive. Several difficulties and unsolved problems involving this scheme are noted. Finally, we speculate on the interpretation of two interesting objects (PKS 0237-23 and the ‘twin quasars’ 0957+56A,B) in the context of this scheme.


2010 ◽  
Vol 27 (3) ◽  
pp. 360-373 ◽  
Author(s):  
Michael B. Pracy ◽  
Warrick J. Couch ◽  
Harald Kuntschner

AbstractWe have used the Low Resolution Imaging Spectrograph on the W. M. Keck I telescope to obtain spatially resolved spectroscopy of a small sample of six ‘post-starburst’ and three ‘dusty-starburst’ galaxies in the rich cluster CL 0016+16 at z=0.55. We use this to measure radial profiles of the Hδ and [OII]λ3727 lines which are diagnostic probes of the mechanisms that give rise to the abrupt changes in star formation rates in these galaxies. In the post-starburst sample we are unable to detect any radial gradients in the Hδ line equivalent width — although one galaxy exhibits a gradient from one side of the galaxy to the other. The absence of Hδ gradients in these galaxies is consistent with their production via interaction with the intracluster medium; however, our limited spatial sampling prevents us from drawing robust conclusions. All members of the sample have early-type morphologies, typical of post-starburst galaxies in general, but lack the high incidence of tidal tails and disturbances seen in local field samples. This argues against a merger origin and adds weight to a scenario where truncation by the intra-cluster medium is at work. The post-starburst spectral signature is consistent over the radial extent probed with no evidence of [OII]λ3727 emission and strong Hδ absorption at all radii, i.e. the post-starburst classification is not an aperture effect. In contrast the ‘dusty-starburst’ sample shows a tendency for a central concentration of [OII]λ3727 emission. This is most straightforwardly interpreted as the consequence of a central starburst. However, other possibilities exist such as a non-uniform dust distribution (which is expected in such galaxies) and/or a non-uniform starburst age distribution. The members of the sample exhibit late-type and irregular morphologies.


Sign in / Sign up

Export Citation Format

Share Document