Protein Conformational Transitions: The Closure Mechanism of a Kinase Explored by Atomistic Simulations

2009 ◽  
Vol 131 (1) ◽  
pp. 244-250 ◽  
Author(s):  
Anna Berteotti ◽  
Andrea Cavalli ◽  
Davide Branduardi ◽  
Francesco Luigi Gervasio ◽  
Maurizio Recanatini ◽  
...  
Author(s):  
J.S. Wall ◽  
V. Maridiyan ◽  
S. Tumminia ◽  
J. Hairifeld ◽  
M. Boublik

The high contrast in the dark-field mode of dedicated STEM, specimen deposition by the wet film technique and low radiation dose (1 e/Å2) at -160°C make it possible to obtain high resolution images of unstained freeze-dried macromolecules with minimal structural distortion. Since the image intensity is directly related to the local projected mass of the specimen it became feasible to determine the molecular mass and mass distribution within individual macromolecules and from these data to calculate the linear density (M/L) and the radii of gyration.2 This parameter (RQ), reflecting the three-dimensional structure of the macromolecular particles in solution, has been applied to monitor the conformational transitions in E. coli 16S and 23S ribosomal RNAs in solutions of various ionic strength.In spite of the differences in mass (550 kD and 1050 kD, respectively), both 16S and 23S RNA appear equally sensitive to changes in buffer conditions. In deionized water or conditions of extremely low ionic strength both appear as filamentous structures (Fig. la and 2a, respectively) possessing a major backbone with protruding branches which are more frequent and more complex in 23S RNA (Fig. 2a).


2010 ◽  
Vol 57 (1) ◽  
pp. 1-20
Author(s):  
Małgorzata Skorupa ◽  
Tomasz Machniewicz

Application of the Strip Yield Model to Crack Growth Predictions for Structural SteelA strip yield model implementation by the present authors is applied to predict fatigue crack growth observed in structural steel specimens under various constant and variable amplitude loading conditions. Attention is paid to the model calibration using the constraint factors in view of the dependence of both the crack closure mechanism and the material stress-strain response on the load history. Prediction capabilities of the model are considered in the context of the incompatibility between the crack growth resistance for constant and variable amplitude loading.


2014 ◽  
Vol 55 ◽  
pp. 153-159 ◽  
Author(s):  
Ming S. Liu ◽  
Cheryl Taylor ◽  
Bill Chong ◽  
Lihui Liu ◽  
Ante Bilic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document