Atomistic Simulations of Ultrashort Pulsed Laser Ablation of Polycrystalline Diamond

2013 ◽  
Vol 9 (6) ◽  
pp. 804-811 ◽  
Author(s):  
Z. Li ◽  
J. Wang ◽  
T. Sun
2012 ◽  
Vol 500 ◽  
pp. 351-356 ◽  
Author(s):  
Zeng Qiang Li ◽  
Jun Wang ◽  
Qi Wu

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel McPhee ◽  
Alexander Groetsch ◽  
Jonathan D. Shephard ◽  
Uwe Wolfram

AbstractThe underlying constraint of ultrashort pulsed laser ablation in both the clinical and micromachining setting is the uncertainty regarding the impact on the composition of material surrounding the ablated region. A heat model representing the laser-tissue interaction was implemented into a finite element suite to assess the cumulative temperature response of bone during ultrashort pulsed laser ablation. As an example, we focus on the extraction of mineralised collagen fibre micropillars. Laser induced heating can cause denaturation of the collagen, resulting in ultrastructural loss which could affect mechanical testing results. Laser parameters were taken from a used micropillar extraction protocol. The laser scanning pattern consisted of 4085 pulses, with a final radial pass being 22 $$\upmu {\text {m}}$$ μ m away from the micropillar. The micropillar temperature was elevated to 70.58 $$^{\circ }{\text {C}}$$ ∘ C , remaining 79.42 $$^{\circ }{\text {C}}$$ ∘ C lower than that of which we interpret as an onset for denaturation. We verified the results by means of Raman microscopy and Energy Dispersive X-ray Microanalysis and found the laser-material interaction had no effect on the collagen molecules or mineral nanocrystals that constitute the micropillars. We, thus, show that ultrashort pulsed laser ablation is a safe and viable tool to fabricate bone specimens for mechanical testing at the micro- and nanoscale and we provide a computational model to efficiently assess this.


Polimery ◽  
2008 ◽  
Vol 53 (09) ◽  
pp. 657-662 ◽  
Author(s):  
STEPHAN BARCIKOWSKI ◽  
MICHAEL HUSTEDT ◽  
BORIS CHICHKOV

Sign in / Sign up

Export Citation Format

Share Document