Molecular ArchitectureviaCoordination:  Self-Assembly, Characterization, and Host−Guest Chemistry of Mixed, Neutral-Charged, Pt−Pt and Pt−Pd Macrocyclic Tetranuclear Complexes. X-ray Crystal Structure of Cyclobis[[cis- Pt(dppp)(4-ethynylpyridine)2][cis-Pd2+(PEt3)22-OSO2CF3]]

1997 ◽  
Vol 119 (10) ◽  
pp. 2524-2533 ◽  
Author(s):  
Jeffery A. Whiteford ◽  
Cuong V. Lu ◽  
Peter J. Stang
2015 ◽  
Vol 51 (32) ◽  
pp. 6905-6908 ◽  
Author(s):  
V. Haridas ◽  
Appa Rao Sapala ◽  
Jerry P. Jasinski

A detailed ultramicroscopic analysis of three novel triazolophanes demonstrated a hierarchical self-assembly mechanism. These macrocycles self-assemble in a concentration dependent manner to hemi-toroids, toroids and finally to vesicles. The finding was supported by ultramicroscopy and X-ray crystal structure studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pankaj Sharma ◽  
Rachana Tomar ◽  
Shivpratap Singh Yadav ◽  
Maulik D. Badmalia ◽  
Samir Kumar Nath ◽  
...  

AbstractIt remains undeciphered how thermophilic enzymes display enhanced stability at elevated temperatures. Taking l-asparaginase from P. furiosus (PfA) as an example, we combined scattering shapes deduced from small-angle X-ray scattering (SAXS) data at increased temperatures with symmetry mates from crystallographic structures to find that heating caused end-to-end association. The small contact point of self-binding appeared to be enabled by a terminal short β-strand in N-terminal domain, Leu179-Val-Val-Asn182 (LVVN). Interestingly, deletion of this strand led to a defunct enzyme, whereas suplementation of the peptide LVVN to the defunct enzyme restored structural frameworkwith mesophile-type functionality. Crystal structure of the peptide-bound defunct enzyme showed that one peptide ispresent in the same coordinates as in original enzyme, explaining gain-of lost function. A second peptide was seen bound to the protein at a different location suggesting its possible role in substrate-free molecular-association. Overall, we show that the heating induced self-assembly of native shapes of PfA led to an apparent super-stable assembly.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 661
Author(s):  
Saied M. Soliman ◽  
Jamal Lasri ◽  
Matti Haukka ◽  
Essam N. Sholkamy ◽  
Hessa H. Al-Rasheed ◽  
...  

The synthesis and X-ray crystal structure of the trinuclear [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 complex of the s-triazine-based di-compartmental ligand, 2-methoxy-4,6-bis(2-(pyridin-2-ylmsethylene)hydrazinyl)-1,3,5-triazine (H2L), are presented. The Cu1 and Cu2 are penta-coordinated with CuN3ClO coordination environment, distorted square pyramidal coordination geometry while Cu3 is hexa-coordinated with CuN2O4 coordination sphere, and distorted octahedral geometry. The complex crystallized in the primitive P-1 triclinic crystal system with two molecular units per unit cell. Its packing is dominated by the O–H (35.5%) and Cl–H (8.8%) hydrogen bonding interactions as well as the π–π stacking (2.3%) and anion–π-stacking interactions (3.7%). The different coordination interactions were analyzed using atoms in molecules (AIM) theory, and the number of charge transferences from the ligand group to Cu(II) were determined using natural bond orbital calculations. The effect of the free ligand and its Cu(II) complex on the tested pathogenic microbes (Staphylococcus aureus, S. epidermidis, Enterococcus faecalis, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and one fungal isolate (Candida albicans) is presented. Both have wide spectrum antimicrobial activity against the selected microorganism. It is observed that the free ligand at 180 µg/mL was more effective than its Cu(II) complex and showed close results compared to the positive control gentamicin. At higher concentrations (1 mg/mL), the Cu(II) complex was found to be more active against S. epidermidis, E. coli and C. albicans than the lower concentration. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values are also lower for the Cu(II) complex than the free ligand.


1996 ◽  
Vol 35 (7) ◽  
pp. 1782-1791 ◽  
Author(s):  
Jesús J. Pérez-Torrente ◽  
Miguel A. Casado ◽  
Miguel A. Ciriano ◽  
Fernando J. Lahoz ◽  
Luis A. Oro

2018 ◽  
Vol 74 (8) ◽  
pp. 961-966
Author(s):  
Nawal K. Al Rasbi ◽  
Michael D. Ward

The self-assembly of metal–polydentate ligands to give supramolecular tetrahedral complexes is of considerable current interest. A new ligand, 4-benzyl-2-[1-(2-{[3-(4-benzylpyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzyl)-1H-pyrazol-3-yl]pyridine (L), with chelating pyrazolyl–pyridine units substituted on the 4-position of the pyridyl ring with benzyl units, has been synthesized and fully characterized. The self-assembly of L with cobalt(II) gave rise to a tetrahedral cage (hexakis{μ-4-benzyl-2-[1-(2-{[3-(4-benzylpyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzyl)-1H-pyrazol-3-yl]pyridine}perchloratotetracobalt(II) octakis(perchlorate) acetonitrile undecasolvate, [Co4(ClO4)(C38H32N6)6](ClO4)7·11CH3CN) with approximate T symmetry. The X-ray crystal structure of the cage, i.e. [Co4 L 6\subsetClO4](ClO4)7, shows that the substituted benzyl groups are oriented away from the centres of their respective ligands towards the CoII vertices, making small outward-facing pockets from three benzyl rings at the corners of the tetrahedron.


Sign in / Sign up

Export Citation Format

Share Document