scholarly journals Understanding the Role of Surface States on Mesoporous NiO Films

2020 ◽  
Vol 142 (43) ◽  
pp. 18668-18678
Author(s):  
Lei Tian ◽  
Robin Tyburski ◽  
Chenyu Wen ◽  
Rui Sun ◽  
Mohamed Abdellah ◽  
...  
Keyword(s):  
2021 ◽  
Vol 103 (14) ◽  
Author(s):  
Geert R. Hoogeboom ◽  
Geert-Jan N. Sint Nicolaas ◽  
Andreas Alexander ◽  
Olga Kuschel ◽  
Joachim Wollschläger ◽  
...  
Keyword(s):  

2000 ◽  
Vol 77 (15) ◽  
pp. 2352-2354 ◽  
Author(s):  
P. Malý ◽  
J. Kudrna ◽  
F. Trojánek ◽  
D. Mikeš ◽  
P. Němec ◽  
...  

2014 ◽  
Vol 126 (49) ◽  
pp. 13622-13626 ◽  
Author(s):  
Beniamino Iandolo ◽  
Anders Hellman

Author(s):  
TORSTEN OEKERMANN ◽  
DERCK SCHLETTWEIN ◽  
NILS I. JAEGER ◽  
DIETER WÖHRLE

The influence of electron-withdrawing substituents on the photoelectrochemical properties of phthalocyanines is shown in a comparison between hexadecafluorophthalocyaninatozinc(II) ( F 16 PcZn ) and the unsubstituted phthalocyaninatozinc(II) ( PcZn ). The role of surface states in the photoelectrochemistry of both materials has been investigated by time-resolved photocurrent measurements in the millisecond range. The charging and discharging of surface states could clearly be seen as spikes at the beginning and the end of illumination. Surface states were filled with photogenerated electrons at PcZn and with photogenerated holes at F 16 PcZn . In the steady state under illumination only cathodic photocurrents were detected at PcZn , while at F 16 PcZn both cathodic and anodic photocurrents were observed. An adsorption step of electroactive species prior to the charge transfer was derived from the dependence of the steady state photocurrents on the electrolyte concentration for both materials. The concentration dependence of the charging and discharging currents, however, showed that charge transfer from surface states to the electrolyte occurs at PcZn , while at F 16 PcZn the surface states only represent recombination centres.


Sign in / Sign up

Export Citation Format

Share Document