Thiol-Mediated α-Amino Radical Formation via Visible-Light-Activated Ion-Pair Charge-Transfer Complexes

Author(s):  
Keishi Kohara ◽  
Aaron Trowbridge ◽  
Milo A. Smith ◽  
Matthew J. Gaunt
2019 ◽  
Vol 52 (9) ◽  
pp. 3448-3453 ◽  
Author(s):  
Alexandre Baralle ◽  
Patxi Garra ◽  
Bernadette Graff ◽  
Fabrice Morlet-Savary ◽  
Céline Dietlin ◽  
...  

1994 ◽  
Vol 243 (1-2) ◽  
pp. 660-663 ◽  
Author(s):  
Toshihiko Nagamura ◽  
Hiroshi Sakaguchi ◽  
Kyoichi Sasaki ◽  
Chihiro Mochizuki ◽  
Kuniyuki Suzuki

Polyhedron ◽  
2008 ◽  
Vol 27 (13) ◽  
pp. 2833-2844 ◽  
Author(s):  
Bing-Qian Yao ◽  
Jia-Sen Sun ◽  
Zheng-Fang Tian ◽  
Xiao-Ming Ren ◽  
Da-Wei Gu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3195
Author(s):  
Hong Chen ◽  
Mehdi Vahdati ◽  
Pu Xiao ◽  
Frédéric Dumur ◽  
Jacques Lalevée

The development of visible-light 3D printing technology by using water-soluble initiating systems has attracted widespread attention due to their potential applications in the manufacture of hydrogels. Besides, at present, the preparation of water-soluble photoinitiators suitable for visible light irradiation (such as LEDs) still remains a challenge. Therefore, this work is devoted to developing water-soluble photoinitiators (PI)/photoinitiating systems (PIS) upon irradiation with a LED @ 405 nm. In detail, a new water-slightly-soluble chalcone derivative dye [(E)-3-(4-(dimethylamino) phenyl)-1-(4-(2-(2-(2-methoxyethoxy) ethoxy) ethoxy) phenyl) prop-2-en-1-one] was synthesized here and used as a PI with a water-soluble coinitiator, i.e., triethanolamine (TEA) which was also used as an electron donor. When combined together, a charge transfer complex (CTC) formed immediately which exhibited excellent initiating ability for the free radical photopolymerization of poly(ethyleneglycol)diacrylate (PEG-DA). In light of the powerful CTC effect, the [dye-TEA] CTC could not only exhibit enhanced water solubility and mechanical properties but could also be effectively applied for 3D printing. This CTC system is environmentally friendly and cost-saving which demonstrates a great potential to prepare hydrogels via photopolymerization.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ayman A. Gouda ◽  
Ragaa El Sheikh ◽  
Rham M. El-Azzazy

Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT) in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V)-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1for Quinz, ARS, and Mo(V)-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%.) of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.


2002 ◽  
Vol 41 (20) ◽  
pp. 5241-5248 ◽  
Author(s):  
Francesco Bigoli ◽  
Paola Deplano ◽  
Maria Laura Mercuri ◽  
Maria Angela Pellinghelli ◽  
Luca Pilia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document