Oriented-External Electric Fields Create Absolute Enantioselectivity in Diels–Alder Reactions: Importance of the Molecular Dipole Moment

2018 ◽  
Vol 140 (41) ◽  
pp. 13350-13359 ◽  
Author(s):  
Zhanfeng Wang ◽  
David Danovich ◽  
Rajeev Ramanan ◽  
Sason Shaik
2020 ◽  
Author(s):  
Bowen Han ◽  
Christine Isborn ◽  
Liang Shi

Partial atomic charges provide an intuitive and efficient way to describe the charge distribution and the resulting intermolecular electrostatic interactions in liquid water. Many charge models exist and it is unclear which model provides the best assignment of partial atomic charges in response to the local molecular environment. In this work, we systematically scrutinize various electronic structure methods and charge models (Mulliken, Natural Population Analysis, CHelpG, RESP, Hirshfeld, Iterative Hirshfeld, and Bader) by evaluating their performance in predicting the dipole moments of isolated water, water clusters, and liquid water as well as charge transfer in the water dimer and liquid water. Although none of the seven charge models is capable of fully capturing the dipole moment increase from isolated water (1.85 D) to liquid water (about 2.9 D), the Iterative Hirshfeld method performs best for liquid water, reproducing its experimental average molecular dipole moment, yielding a reasonable amount of intermolecular charge transfer, and showing modest sensitivity to the local water environment. The performance of the charge model is dependent on the choice of the density functional and the quantum treatment of the environment. The computed molecular dipole moment of water generally increases with the percentage of the exact Hartree-Fock exchange in the functional, whereas the amount of charge transfer between molecules decreases. For liquid water, including two full solvation shells of surrounding water molecules (within about 5.5 A of the central water) in the quantum-chemical calculation converges the charges of the central water molecule. Our final pragmatic quantum-chemical charge assigning protocol for liquid water is the Iterative Hirshfeld method with M06-HF/aug-cc-pVDZ and a quantum region cutoff radius of 5.5 A.<br>


1975 ◽  
Vol 16 (11) ◽  
pp. 917-920 ◽  
Author(s):  
Mark P. Warchol ◽  
E.N. DiCarlo ◽  
Cynthia A. Maryanoff ◽  
Kurt Mislow

2020 ◽  
Author(s):  
Matthew Hennefarth ◽  
Anastassia N. Alexandrova

<div> <div> <div> <p>External electric fields have proven to be an effective tool in catalysis, on par with pressure and temperature, affecting the thermodynamics and kinetics of a reaction. However, fields in molecules are complicated heterogeneous vector objects, and there is no universal recipe for grasping the exact features of these fields that implicate reactivity. Herein, we demonstrate that topological features of the heterogeneous electric field within the reactant state, as well as of the quantum mechanical electron density – a scalar reporter on the field experienced by the system – can be identified as rigorous descriptors of the reactivity to follow. We scrutinize specifically the Diels-Alder reaction. Its 3-D nature and the lack of a singular directionality of charge movement upon barrier crossing makes the effect of the electric field not obvious. We show that the electric field topology around the dienophile double bond, and the associated changes in the topology of the electron density in this bond are predictors of the reaction barrier. They are also the metrics by which to rationalize and predict how the external field would inhibit or enhance the reaction. The findings pave the way toward designing external fields for catalysis, as well as reading the reactivity without an explicit mechanistic interrogation, for a variety of reactions. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Bowen Han ◽  
Christine Isborn ◽  
Liang Shi

Partial atomic charges provide an intuitive and efficient way to describe the charge distribution and the resulting intermolecular electrostatic interactions in liquid water. Many charge models exist and it is unclear which model provides the best assignment of partial atomic charges in response to the local molecular environment. In this work, we systematically scrutinize various electronic structure methods and charge models (Mulliken, Natural Population Analysis, CHelpG, RESP, Hirshfeld, Iterative Hirshfeld, and Bader) by evaluating their performance in predicting the dipole moments of isolated water, water clusters, and liquid water as well as charge transfer in the water dimer and liquid water. Although none of the seven charge models is capable of fully capturing the dipole moment increase from isolated water (1.85 D) to liquid water (about 2.9 D), the Iterative Hirshfeld method performs best for liquid water, reproducing its experimental average molecular dipole moment, yielding a reasonable amount of intermolecular charge transfer, and showing modest sensitivity to the local water environment. The performance of the charge model is dependent on the choice of the density functional and the quantum treatment of the environment. The computed molecular dipole moment of water generally increases with the percentage of the exact Hartree-Fock exchange in the functional, whereas the amount of charge transfer between molecules decreases. For liquid water, including two full solvation shells of surrounding water molecules (within about 5.5 A of the central water) in the quantum-chemical calculation converges the charges of the central water molecule. Our final pragmatic quantum-chemical charge assigning protocol for liquid water is the Iterative Hirshfeld method with M06-HF/aug-cc-pVDZ and a quantum region cutoff radius of 5.5 A.<br>


2020 ◽  
Vol 102 (5) ◽  
Author(s):  
N. B. Clayburn ◽  
T. H. Wright ◽  
E. B. Norrgard ◽  
D. DeMille ◽  
L. R. Hunter

Sign in / Sign up

Export Citation Format

Share Document