quadruple zeta
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Dmitrij Rappoport

Property-optimized Gaussian basis sets of split-valence, triple-zeta and quadruple-zeta valence quality are developed for the lanthanides Ce–Lu for use with small-core relativistic effective core potentials. They are constructed in a systematic fashion by augmenting def2 orbital basis sets with diffuse basis functions and minimizing negative static isotropic polarizabilities of lanthanide atoms with respect to basis set exponents within the unrestricted Hartree–Fock method. The basis set quality is assessed using a test set of 70 molecules containing the lanthanides in their common oxidation states and f electron occupations. 5d orbital occupation turns out to be the determining factor for the basis set convergence of polarizabilities in lanthanide atoms and the molecular test set. Therefore, two series of property-optimized basis sets are defined. The augmented def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets balance the accuracy of polarizabilities across lanthanide oxidation states. The relative errors in atomic and molecular polarizability calculations are ≤8% for augmented split-valence basis sets, ≤2.5% for augmented triple-zeta valence basis sets, and ≤1% for augmented quadruple-zeta valence basis sets. In addition, extended def2-TZVPPDD and def2-QZVPPDD are provided for accurate calculations of lanthanide atoms and neutral clusters. The property-optimized basis sets developed in this work are shown to accurately reproduce electronic absorption spectra of a series of LnCp'3- complexes (Cp' = C5H4SiMe3, Ln = Ce–Nd, Sm) with time-dependent density functional theory.


2018 ◽  
Vol 20 (46) ◽  
pp. 29274-29284 ◽  
Author(s):  
Amit R. Sharma ◽  
David E. Weeks

The excited state, spin-free, and spin–orbit interatomic potential energy surfaces of Rb + He which correlate with the Rb atomic terms 52S, 52P, 42D, 62S, 62P, 52D, and 72S, are calculated at multi-reference configuration interaction level of theory using all-electron basis sets of triple and quadruple-zeta quality that have been contracted for Douglas–Kroll–Hess (DKH) Hamiltonian and includes core-valence correlation. Important features of the potential energy surfaces are discussed with implications for alkali laser spectroscopy.


2013 ◽  
Vol 9 ◽  
pp. 761-766 ◽  
Author(s):  
Holger F Bettinger ◽  
Otto Hauler

The ring opening of the Dewar form of 1,2-dihydro-1,2-azaborine, 2-aza-3-borabicyclo[2.2.0]hex-5-ene (3) is investigated by theoretical methods by using multiconfiguration SCF (CASSCF) and coupled cluster theory [CCSD(T)] with basis sets up to polarised quadruple-zeta quality. The title compound was previously reported to form photochemically in cryogenic noble gas matrices from 1,2-dihydro-1,2-azaborine (4). Four reaction paths for the thermal ring opening of 3 to 4 could be identified. These are the conventional disrotatory and conrotatory electrocyclic ring-opening pathways where the BN unit is only a bystander. Two more favourable paths are stepwise and involve 1,3-boron–carbon interactions. The lowest energy barrier for the isomerisation reaction, 22 kcal mol−1, should be high enough for an experimental observation in solution. However, in solution the dimerisation of 3 is computed to have a very low barrier (3 kcal mol−1), and thus 3 is expected to be a short-lived reactive intermediate.


2010 ◽  
Vol 127 (4) ◽  
pp. 369-381 ◽  
Author(s):  
André S. P. Gomes ◽  
Kenneth G. Dyall ◽  
Lucas Visscher

Sign in / Sign up

Export Citation Format

Share Document