Structure Property Analysis of the Solution and Solid-State Properties of Bistable Photochromic Hydrazones

Author(s):  
Baihao Shao ◽  
Hai Qian ◽  
Quan Li ◽  
Ivan Aprahamian
2019 ◽  
Author(s):  
Baihao Shao ◽  
Hai Qian ◽  
Quan Li ◽  
ivan aprahamian

The development of new photochromic compounds, and the optimization of their photophysical and switching properties are prerequisites for accessing new functions and opportunities that are not possible with currently available systems. To this end we recently developed a new bistable hydrazone switch that undergoes efficient photoswitching and emission ON/OFF toggling in both solution and solid-state. Here, we present a systematic structure-property analysis using a family of hydrazones, and show how their properties, including activation wavelengths, photostationary states (PSSs), photoisomerization quantum yields, thermal half-lives (<i>t</i><sub>1/2</sub>), and solution/solid-state fluorescence characteristics vary as a function of electron donating (EDG) and/or withdrawing (EWG) substituents. These studies resulted in the red-shifting of the absorption profiles of the <i>Z</i> and <i>E</i> isomers of the switches, while maintaining excellent PSSs in almost all of the compounds. The introduction of <i>para</i>-NMe<sub>2</sub>, and/or <i>para</i>-NO<sub>2</sub> groups improved the photoisomerization quantum yields, and the extremely long thermal half-lives (tens to thousands of years) were maintained in most cases, even in a push-pull system, which can be activated solely with visible light. Hydrazones bearing EDGs at the stator phenyl group are an exception and show up to 6 orders of magnitude acceleration in<i>t</i><sub>1/2 </sub>(<i>i.e.</i>, days)<sub> </sub>because of a change in the isomerization mechanism. Moreover, we discovered that a <i>para</i>-NMe<sub>2</sub> group is required to have reasonable fluorescence quantum yields in solution, and that rigidification enhances the emission in the solid-state. Finally, X-ray crystallography analysis showed that the switching process is more efficient in the solid-state when the hydrazone is loosely packed.<br>


2019 ◽  
Author(s):  
Baihao Shao ◽  
Hai Qian ◽  
Quan Li ◽  
ivan aprahamian

The development of new photochromic compounds, and the optimization of their photophysical and switching properties are prerequisites for accessing new functions and opportunities that are not possible with currently available systems. To this end we recently developed a new bistable hydrazone switch that undergoes efficient photoswitching and emission ON/OFF toggling in both solution and solid-state. Here, we present a systematic structure-property analysis using a family of hydrazones, and show how their properties, including activation wavelengths, photostationary states (PSSs), photoisomerization quantum yields, thermal half-lives (<i>t</i><sub>1/2</sub>), and solution/solid-state fluorescence characteristics vary as a function of electron donating (EDG) and/or withdrawing (EWG) substituents. These studies resulted in the red-shifting of the absorption profiles of the <i>Z</i> and <i>E</i> isomers of the switches, while maintaining excellent PSSs in almost all of the compounds. The introduction of <i>para</i>-NMe<sub>2</sub>, and/or <i>para</i>-NO<sub>2</sub> groups improved the photoisomerization quantum yields, and the extremely long thermal half-lives (tens to thousands of years) were maintained in most cases, even in a push-pull system, which can be activated solely with visible light. Hydrazones bearing EDGs at the stator phenyl group are an exception and show up to 6 orders of magnitude acceleration in<i>t</i><sub>1/2 </sub>(<i>i.e.</i>, days)<sub> </sub>because of a change in the isomerization mechanism. Moreover, we discovered that a <i>para</i>-NMe<sub>2</sub> group is required to have reasonable fluorescence quantum yields in solution, and that rigidification enhances the emission in the solid-state. Finally, X-ray crystallography analysis showed that the switching process is more efficient in the solid-state when the hydrazone is loosely packed.<br>


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 75
Author(s):  
Shuo Yan ◽  
Chae-Ho Yim ◽  
Vladimir Pankov ◽  
Mackenzie Bauer ◽  
Elena Baranova ◽  
...  

Solid-state lithium metal batteries (LMBs) have become increasingly important in recent years due to their potential to offer higher energy density and enhanced safety compared to conventional liquid electrolyte-based lithium-ion batteries (LIBs). However, they require highly functional solid-state electrolytes (SSEs) and, therefore, many inorganic materials such as oxides of perovskite La2/3−xLi3xTiO3 (LLTO) and garnets La3Li7Zr2O12 (LLZO), sulfides Li10GeP2S12 (LGPS), and phosphates Li1+xAlxTi2−x(PO4)3x (LATP) are under investigation. Among these oxide materials, LLTO exhibits superior safety, wider electrochemical window (8 V vs. Li/Li+), and higher bulk conductivity values reaching in excess of 10−3 S cm−1 at ambient temperature, which is close to organic liquid-state electrolytes presently used in LIBs. However, recent studies focus primarily on composite or hybrid electrolytes that mix LLTO with organic polymeric materials. There are scarce studies of pure (100%) LLTO electrolytes in solid-state LMBs and there is a need to shed more light on this type of electrolyte and its potential for LMBs. Therefore, in our review, we first elaborated on the structure/property relationship between compositions of perovskites and their ionic conductivities. We then summarized current issues and some successful attempts for the fabrication of pure LLTO electrolytes. Their electrochemical and battery performances were also presented. We focused on tape casting as an effective method to prepare pure LLTO thin films that are compatible and can be easily integrated into existing roll-to-roll battery manufacturing processes. This review intends to shed some light on the design and manufacturing of LLTO for all-ceramic electrolytes towards safer and higher power density solid-state LMBs.


Sign in / Sign up

Export Citation Format

Share Document