scholarly journals Data-Independent Acquisition Mass Spectrometry of the Human Lens Enhances Spatiotemporal Measurement of Fiber Cell Aging

Author(s):  
Lee S. Cantrell ◽  
Kevin L. Schey
2021 ◽  
Author(s):  
Lee S Cantrell ◽  
Kevin L Schey

The ocular lens proteome undergoes post-translational and progressive degradation as fiber cells age. The oldest fiber cells and the proteins therein are present at birth and are retained through death. Transparency of the lens is maintained in part by the high abundance crystallin family proteins (up to 300 mg/mL), which establishes a high dynamic range of protein abundance. As a result, previous Data Dependent Analysis (DDA) measurements of the lens proteome are less equipped to identify the lowest abundance proteins. In an attempt to probe more deeply into the lens proteome, we measured the insoluble lens proteome of an 18-year-old human with DDA and newer Data Independent Analysis (DIA) methods. By applying library free DIA search methods, 4,564 protein groups, 48,474 peptides and 5,577 deamidation sites were detected: significantly outperforming the quantity of identifications in using DDA and Pan-Human DIA library searches. Finally, by segmenting the lens into multiple fiber cell-age related regions, we uncovered cell-age resolved changes in proteome composition and putative function.


2007 ◽  
Vol 259 (1-3) ◽  
pp. 161-173 ◽  
Author(s):  
Zee-Yong Park ◽  
Rovshan Sadygov ◽  
Judy M. Clark ◽  
John I. Clark ◽  
John R. Yates

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yalan Xu ◽  
Xiuyue Song ◽  
Dong Wang ◽  
Yin Wang ◽  
Peifeng Li ◽  
...  

AbstractChemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.


1998 ◽  
Vol 67 (1) ◽  
pp. 21-30 ◽  
Author(s):  
ZHIXIANG MA ◽  
STACY R.A. HANSON ◽  
KIRSTEN J. LAMPI ◽  
LARRY L. DAVID ◽  
DAVID L. SMITH ◽  
...  

Author(s):  
David L. Smith ◽  
Peiping Lin ◽  
Anders Lund ◽  
Jean B. Smith

Sign in / Sign up

Export Citation Format

Share Document