Links between Purchase Location and Stable Isotope Ratios of Bottled Water, Soda, and Beer in the United States

2010 ◽  
Vol 58 (12) ◽  
pp. 7311-7316 ◽  
Author(s):  
Lesley A. Chesson ◽  
Luciano O. Valenzuela ◽  
Shannon P. O’Grady ◽  
Thure E. Cerling ◽  
James R. Ehleringer
Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 862 ◽  
Author(s):  
Charles J. Watkinson ◽  
Peter Gasson ◽  
Gareth O. Rees ◽  
Markus Boner

The stable isotope ratios of oxygen, hydrogen, carbon and sulfur from extracted wood of 87 samples of oaks from the United States were analysed. Relationships with climate variables and the stable isotope ratios of the 69 training dataset samples were investigated to a monthly resolution using long-term monthly mean climate data from NASA and the University of East Anglia’s Climate Research Unit, in conjunction with forecast data for hydrogen and oxygen isotope ratios in precipitation. These relationships were used to construct model isoscapes for oxygen, hydrogen, carbon and sulfur for US oak with the aim of using them to forecast isotopic patterns in areas that were not sampled and predict values in samples not used to construct the models. The leading predictors for isoscape generation were oxygen isotope ratios in January precipitation for oak oxygen isotope ratios, hydrogen isotope ratios in July precipitation for oak hydrogen isotope ratios, water vapour in April for carbon isotope ratios, and reflected shortwave radiation in March in combination with sulfate concentration in May for oak sulfur isotopes. The generated isoscapes can be used to show regions an unknown sample may have originated from with a resolution dependent on the rarity of the stable isotope signature within the United States. The models were assessed using the data of 18 samples of georeferenced oak. The assessment found that 100% of oxygen, 94% of hydrogen, 78% of carbon, and 94% of sulfur isotope ratios in the 18 test dataset samples fell within two standard deviations of the isoscape models. Using the results of the isoscapes in combination found that there were 4/18 test samples which did not fall within two standard deviations of the four models, this is largely attributed to the lower predictive power of the carbon isoscape model in conjunction with high local variability in carbon isotope ratios in both the test and training data. The method by which this geographic origin method has been developed will be useful to combat illegal logging and to validate legal supply chains for the purpose of good practice due diligence.


2010 ◽  
Vol 58 (4) ◽  
pp. 2358-2363 ◽  
Author(s):  
Lesley A. Chesson ◽  
Luciano O. Valenzuela ◽  
Shannon P. O’Grady ◽  
Thure E. Cerling ◽  
James R. Ehleringer

2007 ◽  
Vol 43 (3) ◽  
Author(s):  
Gabriel J. Bowen ◽  
James R. Ehleringer ◽  
Lesley A. Chesson ◽  
Erik Stange ◽  
Thure E. Cerling

2005 ◽  
Vol 41 ◽  
pp. 77-84 ◽  
Author(s):  
Eric J. Steig ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon ◽  
Susan D. Kaspari ◽  
Markus M. Frey ◽  
...  

AbstractShallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO42–) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to ±1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO42–, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


ACS Omega ◽  
2021 ◽  
Author(s):  
Purna K. Khatri ◽  
Roberto Larcher ◽  
Federica Camin ◽  
Luca Ziller ◽  
Agostino Tonon ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Luana Bontempo ◽  
Daniela Bertoldi ◽  
Pietro Franceschi ◽  
Fabio Rossi ◽  
Roberto Larcher

Umbrian tobacco of the Virginia Bright variety is one of the most appreciated tobaccos in Europe, and one characterized by an excellent yield. In recent years, the Umbria region and local producers have invested in introducing novel practices (for production and processing) focused on environmental, social, and economic sustainability. Due to this, tobacco from Umbria is a leading commodity in the global tobacco industry, and it claims a high economic value. The aim of this study is then to assess if elemental and isotopic compositions can be used to protect the quality and geographical traceability of this particular tobacco. For the first time the characteristic value ranges of the stable isotope ratios of the bio-elements as a whole (δ2H, δ13C, δ15N, δ18O, and δ34S) and of the concentration of 56 macro- and micro-elements are now available, determined in Virginia Bright tobacco produced in two different areas of Italy (Umbria and Veneto), and from other worldwide geographical regions. The ranges of variability of elements and stable isotope ratios had slightly different results, according to the three geographical origins considered. In particular, Umbria samples presented significantly lower content of metals potentially dangerous for human health. The results of this first exploratory work highlight the possibility of characterizing tobacco from Umbria, and suggest widening the scope of the survey throughout Italy and foreign regions, in order to be used to describe the geographical origin of tobacco in general and verify the origin of the products on the market.


Sign in / Sign up

Export Citation Format

Share Document