scholarly journals Interaction Mechanism of Some Alkyl Iodides with Femtosecond Laser Pulses

2005 ◽  
Vol 109 (7) ◽  
pp. 1279-1285 ◽  
Author(s):  
C. Kosmidis ◽  
P. Siozos ◽  
S. Kaziannis ◽  
L. Robson ◽  
K. W. D. Ledingham ◽  
...  
Author(s):  
Nitin Uppal ◽  
Panos S. Shiakolas

The use of femtosecond lasers for the micromachining of engineering materials with micro and submicron size features is slowly but steadily increasing. This increase though presents challenges in understanding the interaction mechanism of femtosecond laser pulses with a material and defining process parameters for quality machining. This manuscript will present the setup for a 3DOF femtosecond laser microfabrication (FLM) system and its use in studying the ablation (single and multi shot) characteristics and incubation coefficient of nickel-titanium (NiTi) shape memory alloy. Understanding of these characteristics could allow for the identification of new applications of smart materials in the macro, micro, nano and MEMS domains.


Author(s):  
Nitin Uppal ◽  
Panos S. Shiakolas

Femtosecond laser micromachining (FLM) is a relatively new and promising technology for the micromachining of a wide spectrum of engineering materials with micron and submicron size features. The interaction mechanism of femtosecond laser pulses with matter is not the same as that found in traditional lasers. This manuscript presents a detailed study of the ablation characteristics of a nickel-titanium (NiTi) shape memory alloy in air with femtosecond laser pulses. The single- and multishot ablation threshold fluence and the incubation coefficient (predicting the extent to which accumulation could take place in a material) are evaluated. In addition, morphological changes, such as the emergence of a ripple pattern, are discussed along with the identification of gentle and strong ablation phases. This study provides for the understanding and characterization of NiTi micromachining using FLM technology, which could aid in the identification of new applications for smart materials in the macro-, nano-, and microelectromechanical system domains using this technology.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


2016 ◽  
Vol 80 (1) ◽  
pp. 85-88 ◽  
Author(s):  
V. P. Dresvyanskiy ◽  
M. A. Moiseeva ◽  
A. V. Kuznetsov ◽  
D. S. Glazunov ◽  
B. Chadraa ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Mingcheng Panmai ◽  
Shaolong Tie ◽  
Yi Xu ◽  
Jin Xiang ◽  
...  

Abstract Metasurfaces composed of regularly arranged and deliberately oriented metallic nanoparticles can be employed to manipulate the amplitude, phase and polarization of an incident electromagnetic wave. The metasurfaces operating in the visible to near infrared spectral range rely on the modern fabrication technologies which offer a spatial resolution beyond the optical diffraction limit. Although direct laser writing is an alternative to the fabrication of nanostructures, the achievement of regular nanostructures with deep-subwavelength periods by using this method remains a big challenge. Here, we proposed and demonstrated a novel strategy for regulating disordered plasmonic nanoparticles into nanogratings with deep-subwavelength periods and reshaped nanoparticles by using femtosecond laser pulses. The orientations of the nanogratings depend strongly on the polarization of the femtosecond laser light. Such nanogratings exhibit reflection and polarization control over the reflected light, enabling the realization of polarization sensitive optical memory and color display with high spatial resolution and good chromacity.


Sign in / Sign up

Export Citation Format

Share Document