Natural Energy Decomposition Analysis:  Extension to Density Functional Methods and Analysis of Cooperative Effects in Water Clusters

2005 ◽  
Vol 109 (51) ◽  
pp. 11936-11940 ◽  
Author(s):  
Eric D. Glendening
2015 ◽  
Vol 11 ◽  
pp. 2727-2736 ◽  
Author(s):  
Diego M Andrada ◽  
Nicole Holzmann ◽  
Thomas Hamadi ◽  
Gernot Frenking

Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation.


2019 ◽  
Vol 48 (35) ◽  
pp. 13491-13492 ◽  
Author(s):  
Girolamo Casella ◽  
Célia Fonseca Guerra ◽  
Silvia Carlotto ◽  
Paolo Sgarbossa ◽  
Roberta Bertani ◽  
...  

Correction for ‘New light on an old debate: does the RCN–PtCl2 bond include any back-donation? RCN ← PtCl2 backbonding vs. the IR νCN blue-shift dichotomy in organonitriles–platinum(ii) complexes. A thorough density functional theory – energy decomposition analysis study’ by Girolamo Casella et al., Dalton Trans., 2019, DOI: 10.1039/c9dt02440a.


2018 ◽  
Vol 14 ◽  
pp. 1537-1545 ◽  
Author(s):  
Eric Detmar ◽  
Valentin Müller ◽  
Daniel Zell ◽  
Lutz Ackermann ◽  
Martin Breugst

Carboxylate-assisted cobalt(III)-catalyzed C–H cyanations are highly efficient processes for the synthesis of (hetero)aromatic nitriles. We have now analyzed the cyanation of differently substituted 2-phenylpyridines in detail computationally by density functional theory and also experimentally. Based on our investigations, we propose a plausible reaction mechanism for this transformation that is in line with the experimental observations. Additional calculations, including NCIPLOT, dispersion interaction densities, and local energy decomposition analysis, for the model cyanation of 2-phenylpyridine furthermore highlight that London dispersion is an important factor that enables this challenging C–H transformation. Nonbonding interactions between the Cp* ligand and aromatic and C–H-rich fragments of other ligands at the cobalt center significantly contribute to a stabilization of cobalt intermediates and transition states.


Sign in / Sign up

Export Citation Format

Share Document