In Situ Study of Room-Temperature Oxidation Kinetics of Colloidal Co Nanocrystals Investigated by Faraday Rotation Measurement

2010 ◽  
Vol 115 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Shengguo Jia ◽  
Chih-Hao Hsia ◽  
Dong Hee Son
Author(s):  
V. Optasanu ◽  
M. C. Marco de Lucas ◽  
A. Kanjer ◽  
B. Vincent ◽  
T. Montesin ◽  
...  

2018 ◽  
Vol 499 ◽  
pp. 595-612 ◽  
Author(s):  
Yong Yan ◽  
Benton E. Garrison ◽  
Mike Howell ◽  
Gary L. Bell

2014 ◽  
Vol 1645 ◽  
Author(s):  
Romain VAUCHY ◽  
Renaud.C. BELIN ◽  
Anne-Charlotte ROBISSON ◽  
Fiqiri HODAJ

ABSTRACTUranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.


Sign in / Sign up

Export Citation Format

Share Document