scholarly journals Molecular Excited States: Accurate Calculation of Relative Energies and Electronic Coupling Between Charge Transfer and Non-Charge Transfer States

2015 ◽  
Vol 119 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Brad S. Veldkamp ◽  
Xinle Liu ◽  
Michael R. Wasielewski ◽  
Joseph E. Subotnik ◽  
Mark A. Ratner
2020 ◽  
Vol 4 (8) ◽  
pp. 4137-4157
Author(s):  
Tuuva Kastinen ◽  
Terttu I. Hukka

Dispersion-corrected optimally tuned long-range corrected functional provides constant electronic couplings for non-fullerene polymer solar cell systems regardless of the number of the excited states included in the calculations.


2022 ◽  
Author(s):  
Musen Li ◽  
Rika Kobayashi ◽  
Roger Amos ◽  
Mike Ford ◽  
Jeffrey Robert Reimers

Five effects of correction of the asymptotic potential error in density functionals are identified that significantly improve calculated properties of molecular excited states involving charge-transfer character. Newly developed materials-science computational...


2020 ◽  
Author(s):  
Matthew Stout ◽  
Brian Skelton ◽  
Alexandre N. Sobolev ◽  
Paolo Raiteri ◽  
Massimiliano Massi ◽  
...  

<p>Three Re(I) tricarbonyl complexes, with general formulation Re(N^L)(CO)<sub>3</sub>X (where N^L is a bidentate ligand containing a pyridine functionalized in the position 2 with a thione or a thiazol-2-ylidene group and X is either chloro or bromo) were synthesized and their reactivity explored in terms of solvent-dependent ligand substitution, both in the ground and excited states. When dissolved in acetonitrile, the complexes bound to the thione ligand underwent ligand exchange with the solvent resulting in the formation of Re(NCMe)<sub>2</sub>(CO)<sub>3</sub>X. The exchange was found to be reversible, and the starting complex was reformed upon removal of the solvent. On the other hand, the complexes appeared inert in dichloromethane or acetone. Conversely, the complex bound to the thiazole-2-ylidene ligand did not display any ligand exchange reaction in the dark, but underwent photoactivated ligand substitution when excited to its lowest metal-to-ligand charge transfer manifold. Photolysis of this complex in acetonitrile generated multiple products, including Re(I) tricarbonyl and dicarbonyl solvato-complexes as well as free thiazole-2-ylidene ligand.</p>


2003 ◽  
Vol 68 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Libor Mrázek ◽  
Ján Žabka ◽  
Zdeněk Dolejšek ◽  
Zdeněk Herman

The beam scattering method was used to investigate non-dissociative single-electron charge transfer between the molecular dication CO22+ and Ar or Ne at several collision energies between 3-10 eV (centre-of-mass, c.m.). Relative translational energy distributions of the product ions showed that in the reaction with Ar the CO2+ product was mainly formed in reactions of the ground state of the dication, CO22+(X3Σg-), leading to the excited states of the product CO2+(A2Πu) and CO2+(B2Σu+). In the reaction with Ne, the largest probability had the process from the reactant dication excited state CO22+(1Σg+) leading to the product ion ground state CO2+(X2Πg). Less probable were processes between the other excited states of the dication CO22+, (1∆g), (1Σu-), (3∆u), also leading to the product ion ground state CO2+(X2Πg). Using the Landau-Zener model of the reaction window, relative populations of the ground and excited states of the dication CO22+ in the reactant beam were roughly estimated as (X3Σg):(1∆g):(1Σg+):(1Σu-):(3∆u) = 1.0:0.6:0.5:0.25:0.25.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Jules Tilly ◽  
Glenn Jones ◽  
Hongxiang Chen ◽  
Leonard Wossnig ◽  
Edward Grant

2020 ◽  
Vol 11 (27) ◽  
pp. 6990-6995 ◽  
Author(s):  
Andrew T. Turley ◽  
Andrew Danos ◽  
Antonio Prlj ◽  
Andrew P. Monkman ◽  
Basile F. E. Curchod ◽  
...  

A versatile N-alkylation strategy controls the presence of charge-transfer excited states and the emission colour of N-heterocyclic chromophores.


Sign in / Sign up

Export Citation Format

Share Document