Quantum Tunneling of Hydrogen Atom in Dissociation of Photoexcited Methylamine†

2010 ◽  
Vol 114 (36) ◽  
pp. 9623-9627 ◽  
Author(s):  
Ran Marom ◽  
Chen Levi ◽  
Tal Weiss ◽  
Salman Rosenwaks ◽  
Yehuda Zeiri ◽  
...  
Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 101
Author(s):  
Robert Medel ◽  
Johann R. Springborn ◽  
Deborah L. Crittenden ◽  
Martin A. Suhm

Rotational microwave jet spectroscopy studies of the monoterpenol α-fenchol have so far failed to identify its second most stable torsional conformer, despite computational predictions that it is only very slightly higher in energy than the global minimum. Vibrational FTIR and Raman jet spectroscopy investigations reveal unusually complex OH and OD stretching spectra compared to other alcohols. Via modeling of the torsional states, observed spectral splittings are explained by delocalization of the hydroxy hydrogen atom through quantum tunneling between the two non-equivalent but accidentally near-degenerate conformers separated by a low and narrow barrier. The energy differences between the torsional states are determined to be only 16(1) and 7(1) cm−1hc for the protiated and deuterated alcohol, respectively, which further shrink to 9(1) and 3(1) cm−1hc upon OH or OD stretch excitation. Comparisons are made with the more strongly asymmetric monoterpenols borneol and isopinocampheol as well as with the symmetric, rapidly tunneling propargyl alcohol. In addition, the third—in contrast localized—torsional conformer and the most stable dimer are assigned for α-fenchol, as well as the two most stable dimers for propargyl alcohol.


Author(s):  
Robert Medel ◽  
Johann R. Springborn ◽  
Deborah L. Crittenden ◽  
Martin A. Suhm

Rotational microwave jet spectroscopy studies of the monoterpenol α-fenchol have so far failed to identify its second expected torsional conformer, despite computational predictions that it is only very slightly higher in energy than the most stable conformer. Vibrational FTIR and Raman jet spectroscopy investigations reveal unusually complex OH and OD stretching spectra compared to other alcohols. Via modelling of the torsional states, observed spectral splittings are explained by delocalization of the hydroxy hydrogen atom through quantum tunneling between the two non-equivalent but accidentally near-degenerate conformers separated by a low and narrow barrier. The energy differences between the torsional states are determined to be only 16(1) and 7(1) cm$^{−1}hc$ for the protiated and deuterated alcohol, respectively, which further shrink to 9(1) and 3(1) cm$^{−1}hc$ upon OH or OD stretch excitation. Comparisons are made with the more strongly asymmetric monoterpenols borneol and isopinocampheol as well as with the symmetric, rapidly tunneling propargyl alcohol. Assigned are also for α-fenchol the third – in contrast localized – torsional conformer and the most stable dimer, as well as for propargyl alcohol the two most stable dimers.


iScience ◽  
2021 ◽  
pp. 103674
Author(s):  
Yu Zhu ◽  
Xinrui Yang ◽  
Famin Yu ◽  
Rui Wang ◽  
Qiang Chen ◽  
...  

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-161-Pr10-163
Author(s):  
H. Matsukawa ◽  
H. Miyake ◽  
M. Yumoto ◽  
H. Fukuyama

1982 ◽  
Vol 138 (10) ◽  
pp. 347 ◽  
Author(s):  
Yurii L. Sokolov ◽  
V.P. Yakovlev
Keyword(s):  

2015 ◽  
Vol 9 (3) ◽  
pp. 2470-2475
Author(s):  
Bheku Khumalo

This paper seeks to discuss why information theory is so important. What is information, knowledge is interaction of human mind and information, but there is a difference between information theory and knowledge theory. Look into information and particle theory and see how information must have its roots in particle theory. This leads to the concept of spatial dimensions, information density, complexity, particle density, can there be particle complexity, and re-looking at the double slit experiment and quantum tunneling. Information functions/ relations are discussed.


2019 ◽  
Author(s):  
Shiori Date ◽  
Kensei Hamasaki ◽  
Karen Sunagawa ◽  
Hiroki Koyama ◽  
Chikayoshi Sebe ◽  
...  

<div>We report here a catalytic, Markovnikov selective, and scalable synthetic method for the synthesis of saturated sulfur heterocycles, which are found in the structures of pharmaceuticals and natural products, in one step from an alkenyl thioester. Unlike a potentially labile alkenyl thiol, an alkenyl thioester is stable and easy to prepare. The powerful Co catalysis via a cobalt hydride hydrogen atom transfer and radical-polar crossover mechanism enabled simultaneous cyclization and deprotection. The substrate scope was expanded by the extensive optimization of the reaction conditions and tuning of the thioester unit.</div>


Sign in / Sign up

Export Citation Format

Share Document