Morphology Control of Selenophene–Thiophene Block Copolymers through Side Chain Engineering

2014 ◽  
Vol 47 (15) ◽  
pp. 5002-5009 ◽  
Author(s):  
Jon Hollinger ◽  
Dwight S. Seferos
RSC Advances ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 1514-1521 ◽  
Author(s):  
Xiaokang Li ◽  
Feng Huang ◽  
Tao Jiang ◽  
Xiaohua He ◽  
Shaoliang Lin ◽  
...  

The microphase separation of side chain liquid crystalline (SCLC) block copolymers was studied using dissipative particle dynamics (DPD) simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fatime Eren Erol ◽  
Deniz Sinirlioglu ◽  
Sedat Cosgun ◽  
Ali Ekrem Muftuoglu

Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP) and Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA) random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-MMA)-block-PPEGMA block copolymers by using ATRP, followed by a modification step on the hydroxyl side groups of HEMA via Steglich esterification to afford propargyl side-functional polymer, alkyne-P(HEMA-co-MMA)-block-PPEGMA. Finally, click coupling between side-chain acetylene functionalities and 2,3,4,5,6-pentafluorobenzyl azide yielded fluorinated amphiphilic block copolymers. The obtained polymers were structurally characterized by1H-NMR,19F-NMR, FT-IR, and GPC. Their thermal characterizations were performed using DSC and TGA.


2019 ◽  
Vol 10 (6) ◽  
pp. 1746-1753 ◽  
Author(s):  
Sergio Ayala ◽  
Kyle C. Bentz ◽  
Seth M. Cohen

Block copolymers were used to generate metal–organic frameworks (MOFs) as novel materials (block co-polyMOFs, BCPMOFs) with controlled morphologies.


Sign in / Sign up

Export Citation Format

Share Document