Mesomorphous Structure Change Induced by Binding Site Difference in Ionic Complexes of Linear Polymers and Dendritic Amphiphiles

2008 ◽  
Vol 41 (7) ◽  
pp. 2656-2662 ◽  
Author(s):  
Zhiyu Cheng ◽  
Biye Ren ◽  
Huazhong Shan ◽  
Xinxing Liu ◽  
Zhen Tong
1989 ◽  
Vol 50 (6) ◽  
pp. 599-608 ◽  
Author(s):  
V.B. Priezzhev ◽  
S.A. Terletsky

1996 ◽  
Vol 76 (01) ◽  
pp. 005-008 ◽  
Author(s):  
Jean Claude Lormeau ◽  
Jean Pascal Herault ◽  
Jean Marc Herbert

SummaryWe examined the effect of the synthetic pentasaccharide representing the minimal binding site of heparin to antithrombin on the antithrombin-mediated inactivation of factor Vila bound to tissue factor. This effect was compared to the effect of unfractionated heparin. Using purified recombinant human coagulation factors and either a clotting or an amidolytic assay for the determination of the residual activity of factor Vila, we showed that the pentasaccharide was an efficient antithrombin-dependent inhibitor of the coagulant activity of tissue factor-factor Vila complex. In our experimental conditions, assuming a mean MW of 14,000 for heparin, the molar pseudo-first order rate constants for ATIII-mediated FVIIa inhibition by ATIII-binding heparin and by the synthetic pentasaccharide were found to be similar with respective values of 104,000 ± 10,500 min-1 and 112,000 ± 12,000 min-1 (mean ± s.e.m., n = 3)


1995 ◽  
Vol 73 (05) ◽  
pp. 829-834 ◽  
Author(s):  
Jaya Padmanabhan ◽  
David C Sane

SummaryThe PAI-1 binding site for VN was studied using two independent methods. PAI-1 was cleaved by Staph V8 protease, producing 8 fragments, only 2 of which bound to [125I]-VN. These fragments were predicted to overlap between residues 91-130. Since PAI-2 has structural homology to PAI-1, but does not bind to vitronectin, chimeras of PAI-1 and PAI-2 were constructed. Four chimeras, containing PAI-1 residues 1-70,1-105,1-114, and 1-167 were constructed and expressed in vitro. PAI-1, PAI-2, and all of the chimeras retained inhibitory activity for t-PA, but only the chimera containing PAI-1 residues 1-167 formed a complex with VN. Together, these results predict that the VN binding site of PAI-1 is between residues 115-130.


1997 ◽  
Vol 77 (01) ◽  
pp. 137-142 ◽  
Author(s):  
Kiyoshi Tachikawa ◽  
Keiji Hasurni ◽  
Akira Endo

SummaryPlasminogen binds to endothelial and blood cells as well as to fibrin, where the zymogen is efficiently activated and protected from inhibition by α2-antiplasmin. In the present study we have found that complestatin, a peptide-like metabolite of a streptomyces, enhances binding of plasminogen to cells and fibrin. Complestatin, at concentrations ranging from 1 to 5 μM, doubled 125I-plasminogen binding to U937 cells both in the absence and presence of lipoprotein(a), a putative physiological competitor of plasminogen. The binding of 125I-plasminogen in the presence of complestatin was abolished by e-aminocaproic acid, suggesting that the lysine binding site(s) of the plasminogen molecule are involved in the binding. Equilibrium binding analyses indicated that complestatin increased the maximum binding of 125I-plasminogen to U937 cells without affecting the binding affinity. Complestatin was also effective in increasing 125I-plasminogen binding to fibrin, causing 2-fold elevation of the binding at ~1 μM. Along with the potentiation of plasminogen binding, complestatin enhanced plasmin formation, and thereby increased fibrinolysis. These results would provide a biochemical basis for a pharmacological stimulation of endogenous fibrinolysis through a promotion of plasminogen binding to cells and fibrin.


1979 ◽  
Author(s):  
Jan Hermans

Measurements of light scattering have given much information about formation and properties of fibrin. These studies have determined mass-length ratio of linear polymers (protofibrils) and of fibers, kinetics of polymerization and of lateral association and volume-mass ratio of thick fibers. This ratio is 5 to 1. On the one hand, this high value suggests that the fiber contains channels that allow the diffusion of enzymes such as Factor XHIa and plasmin; on the other hand, the high value appears paradoxical for a stiff fiber made up of elongated units (fibrin monomers) arranged in parallel. Such a high fiber volume is a property of only a small set out of many high-symmetry models of fibrin, which may be constructed from overlapping three-domain monomers which are arranged into strands, are aligned nearly parallel to the fiber axis and make adequate longitudinal and lateral contacts. These models contain helical protofibrils related to each other by rotation axes parallel to the fiber axis. The protofibrils may contain 2, 3 or 4 monomers per helical turn and there are four possible symmetries. A large specific volume is achieved if the ends of each monomer are slightly displaced from the protofibril axis, either by a shift or by a tilt of the monomer. The fiber containing tilted monomers is more highly interconnected; the two ends of a tilted monomer form lateral contacts with different adjacent protofibrils, whereas the two ends of a non-tilted monomer contact the same adjacent protofibril(s).


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
AE Schulze Schleithoff ◽  
A Kairat ◽  
AF Koch ◽  
W Stremmel ◽  
PH Krammer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document