Localization of a Vitronectin Binding Region of Plasminogen Activator Inhibitor-1

1995 ◽  
Vol 73 (05) ◽  
pp. 829-834 ◽  
Author(s):  
Jaya Padmanabhan ◽  
David C Sane

SummaryThe PAI-1 binding site for VN was studied using two independent methods. PAI-1 was cleaved by Staph V8 protease, producing 8 fragments, only 2 of which bound to [125I]-VN. These fragments were predicted to overlap between residues 91-130. Since PAI-2 has structural homology to PAI-1, but does not bind to vitronectin, chimeras of PAI-1 and PAI-2 were constructed. Four chimeras, containing PAI-1 residues 1-70,1-105,1-114, and 1-167 were constructed and expressed in vitro. PAI-1, PAI-2, and all of the chimeras retained inhibitory activity for t-PA, but only the chimera containing PAI-1 residues 1-167 formed a complex with VN. Together, these results predict that the VN binding site of PAI-1 is between residues 115-130.

1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Qi Liu ◽  
Xiang Fan ◽  
Helen Brogren ◽  
Ming-Ming Ning ◽  
Eng H Lo ◽  
...  

Aims: Plasminogen activator inhibitor-1 (PAI-1) is the main and potent endogenous tissue-type plasminogen activator (tPA) inhibitor, but an important question on whether PAI-1 in blood stream responds and interferes with the exogenously administered tPA remains unexplored. We for the first time investigated temporal profiles of PAI-1 concentration and activity in circulation after stroke and tPA administration in rats. Methods: Permanent MCAO focal stroke of rats were treated with saline or 10mg/kg tPA at 3 hours after stroke (n=10 per group). Plasma (platelet free) PAI-1 antigen and activity levels were measured by ELISA at before stroke, 3, 4.5 (1.5 hours after saline or tPA treatments) and 24 hours after stroke. Since vascular endothelial cells and platelets are two major cellular sources for PAI-1 in circulation, we measured releases of PAI-1 from cultured endothelial cells and isolated platelets after direct tPA (4 μg/ml) exposures for 60 min in vitro by ELISA (n=4 per group). Results: At 3 hours after stroke, both plasma PAI-1 antigen and activity were significantly increased (3.09±0.67, and 3.42±0.57 fold of before stroke baseline, respectively, all data are expressed as mean±SE). At 4.5 hours after stroke, intravenous tPA administration significantly further elevated PAI-1 antigen levels (5.26±1.24), while as expected that tPA neutralized most elevated PAI-1 activity (0.33±0.05). At 24 hours after stroke, PAI-1 antigen levels returned to the before baseline level, however, there was a significantly higher PAI-1 activity (2.51±0.53) in tPA treated rats. In vitro tPA exposures significantly increased PAI-1 releases into culture medium in cultured endothelial cells (1.65±0.08) and platelets (2.02±0.17). Conclution: Our experimental results suggest that tPA administration may further elevate stroke-increased blood PAI-1 concentration, but also increase PAI-1 activity at late 24 hours after stroke. The increased PAI-1 releases after tPA exposures in vitro suggest tPA may directly stimulate PAI-1 secretions from vascular walls and circulation platelets, which partially contributes to the PAI-1 elevation observed in focal stroke rats. The underlying regulation mechanisms and pathological consequence need further investigation.


1998 ◽  
Vol 80 (12) ◽  
pp. 942-948 ◽  
Author(s):  
M. Kockx ◽  
H. M. G. Princen ◽  
T. Kooistra

SummaryFibrates are used to lower plasma triglycerides and cholesterol levels in hyperlipidemic patients. In addition, fibrates have been found to alter the plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and apolipoprotein A-I (apo A-I). We have investigated the in vitro effects of fibrates on fibrinogen, PAI-1 and apo A-I synthesis and the underlying regulatory mechanisms in primary monkey hepatocytes.We show that fibrates time- and dose-dependently increase fibrinogen and apo A-I expression and decrease PAI-1 expression in cultured cynomolgus monkey hepatocytes, the effects demonstrating different potency for different fibrates. After three consecutive periods of 24 h the most effective fibrate, ciprofibrate (at 1 mmol/l), increased fibrinogen and apo A-I synthesis to 356% and 322% of control levels, respectively. Maximum inhibition of PAI-1 synthesis was about 50% of control levels and was reached by 1 mmol/l gemfibrozil or ciprofibrate after 48 h. A ligand for the retinoid-X-receptor (RXR), 9-cis retinoic acid, and specific activators of the peroxisome proliferator-activated receptor-α (PPARα), Wy14,643 and ETYA, influenced fibrinogen, PAI-1 and apo A-I expression in a similar fashion, suggesting a role for the PPARα/RXRα heterodimer in the regulation of these genes. When comparing the effects of the various compounds on PPARα trans-activation activity as determined in a PPARα-sensitive reporter gene system and the ability of the compounds to affect fibrinogen, PAI-1 and apo A-I antigen production, a good correlation (r = 0.80; p <0.01) between PPARα transactivation and fibrinogen expression was found. Apo A-I expression correlated only weakly with PPARα transactivation activity (r = 0.47; p = 0.24), whereas such a correlation was absent for PAI-1 (r = 0.03; p = 0.95). These results strongly suggest an involvement of PPARα in the regulation of fibrinogen gene expression.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4204-4213 ◽  
Author(s):  
S Handt ◽  
WG Jerome ◽  
L Tietze ◽  
RR Hantgan

Time-dependent thrombolytic resistance is a critical problem in thrombolytic therapy for acute myocardial infarction. Platelets have been regarded as the main source of plasminogen activator inhibitor-1 (PAI-1) found in occlusive platelet-rich clots. However, endothelial cells are also known to influence the fibrinolytic capacity of blood vessels, but their ability to actively mediate time-dependent thrombolytic resistance has not been fully established. We will show that, in vitro, tumor necrosis factor-alpha-stimulated endothelial cells secrete large amounts of PAI-1 over a period of hours, which then binds to fibrin and protects the clot from tissue plasminogen activator- induced fibrinolysis. In vivo, endothelial cells covering atherosclerotic plaques are influenced by cytokines synthesized by plaque cells. Therefore, we propose that continuous activation of endothelial cells in atherosclerotic blood vessels, followed by elevated PAI-1 secretion and storage of active PAI-1 in the fibrin matrix, leads to clot stabilization. This scenario makes endothelial cells a major factor in time-dependent thrombolytic resistance.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 14596-14596
Author(s):  
S. Chen ◽  
D. O. Henry ◽  
M. K. Wong

14596 Background: Treating prostate cancer through the expression of intrinsic biologic modifiers is a relatively unexplored aspect of prostate cancer therapy. Plasminogen Activator Inhibitor-1 (PAI-1) is expressed at low levels in prostate cancer cells. PAI-1 is both an anti-angiogenesis agent, and also potently inhibits tumor proteases responsible for tumor invasion and metastases such as uPA and tPA. Thus we hypothesized that stimulation of tumor endogenous PAI-1 would result in a particularly powerful and profound prostate cancer regression. We present proof-of-concept from our experimental models that demonstrate significant tumor regression in experimental prostate tumors and supports this hypothesis. Methods and Results: Human prostate adenocarcinoma (PC3 cell line) xenograft tumors engineered to conditionally express either PAI-1 or Green Fluorescent Protein (GFP, control) were used to test our hypothesis. Stable cell lines were created that conditionally express either GFP or PAI-1 under the regulation of a doxycycline-responsive promoter (Tet-On). Thus gene expression is switched on in the presence of doxycycline. PC3 tumors were inoculated and allowed to reach at least 200 mm3 in size whereby the tumor-bearing mice were given doxycycline-doped drinking water. Genes were significantly turned on within 48 hours as monitored by the appearance of a GFP signal in control mice. The induction of PAI-1 results in significant inhibition of tumor growth as compared to GFP control. Importantly, in vitro induction of PAI-1 expression in PC-3 has no direct effects on cell growth as compared to any PC-3 control. Histological analysis of these tumors revealed a rich nexus of fine angiogenic vessels at the interface between control tumors and surrounding stroma. PAI-1 secreting tumors were significantly smaller and were pale, bland, and lacked peritumoral vessels. Protease activity measured by in-situ zymography directly on these tumors revealed that this was significantly reduced in PAI-1 expressing tumors as compared to GFP controls. Conclusion: PAI-1 expression results in tumor inhibition through direct anti-angiogenic effects and inhibition of tumor protease activity. No significant financial relationships to disclose.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3631-3636 ◽  
Author(s):  
C Krishnamurti ◽  
C Bolan ◽  
CA Colleton ◽  
TM Reilly ◽  
BM Alving

The role of defective fibrinolysis caused by elevated activity of plasminogen activator inhibitor-1 (PAI-1) in promoting fibrin deposition in vivo has not been well established. The present study compared the efficacy of thrombin or ancrod, a venom-derived enzyme that clots fibrinogen, to induce fibrin formation in rabbits with elevated PAI-1 levels. One set of male New Zealand rabbits received intravenous endotoxin to increase endogenous PAI-1 activity followed by a 1-hour infusion of ancrod or thrombin; another set of normal rabbits received intravenous human recombinant PAI-1 (rPAI-1) during an infusion of ancrod or thrombin. Thirty minutes after the end of the infusion, renal fibrin deposition was assessed by histopathology. Animals receiving endotoxin, rPAI-1, ancrod, or thrombin alone did not develop renal thrombi. All endotoxin-treated rabbits developed fibrin deposition when infused with ancrod (n = 4) or thrombin (n = 6). Fibrin deposition occurred in 7 of 7 rabbits receiving both rPAI-1 and ancrod and in only 1 of 6 receiving rPAI-1 and thrombin (P “ .01). In vitro, thrombin but not ancrod was inactivated by normal rabbit plasma and by purified antithrombin III or thrombomodulin. The data indicate that elevated levels of PAI-1 promote fibrin deposition in rabbits infused with ancrod but not with thrombin. In endotoxin-treated rabbits, fibrin deposition that occurs with thrombin infusion may be caused by decreased inhibition of procoagulant activity and not increased PAI-1 activity.


2006 ◽  
Vol 95 (01) ◽  
pp. 174-181 ◽  
Author(s):  
Fabrizio Semeraro ◽  
Gabor Voros ◽  
Désiré Collen ◽  
H. Lijnen

SummaryHypoxia in rodents and humans is associated with a reduction of body fat on the one hand, and with enhanced expression of plasminogen activator inhibitor-1 (PAI-1), the main inhibitor of the fibrinolytic system, on the other hand. It was the objective of this study to investigate whether impairment of adipose tissue development by hypoxia may be mediated by PAI-1. Five week old male wild-type (WT) C57Bl/6 mice were fed a standard (SFD) or high fat (HFD) diet and kept under normoxic or hypoxic (10% O2) conditions. In addition, PAI-1 deficient mice and WT littermates were kept on HFD under normoxia or hypoxia. In vitro, the effect of hypoxia (2% O2) was investigated on differentiation of 3T3-L1 cells into adipocytes. Hypoxia induced a significant reduction of weight gain in WT mice on either SFD or HFD, accompanied by lower weights of subcutaneous (SC) and gonadal (GON) fat. Under hypoxic conditions, adipocytes in the adipose tissues were significantly smaller, whereas blood vessel size and density were larger. Serum PAI-1 levels were enhanced in hypoxic mice on SFD but not on HFD, and overall did not correlate with the observed changes in adipose tissue composition. Furthermore, the effects of hypoxia on adipose tissue in mice on HFD were not affected by deficiency of PAI-1. The inhibiting effect of hypoxia on in vitro preadipocyte differentiation was not mediated by PAI-1 activity. In conclusion, impairment of in vivo adipose tissue development and in vitro differentiation of preadipocytes by hypoxia is not mediated by PAI-1.


2008 ◽  
Vol 100 (12) ◽  
pp. 1014-1020 ◽  
Author(s):  
Satoru Koyanagi ◽  
Yukako Kuramoto ◽  
Masahiko Kimura ◽  
Masatoshi Oda ◽  
Tomohiro Kozako ◽  
...  

SummaryPlasminogen activator inhibitor-1 (PAI-1), a member of the ser-pin gene family, is the primary inhibitor of urokinase-type and tissue-type PA s.PA I-1 plays an important role in the process of peripheral tissue remodeling and fibrinolysis through the regulation of PA activity. This serpin is also produced in brain tissues and may regulate the neural protease sequence in the central nervous system (CNS), as it does in peripheral tissues. In fact, PA I-1 mRNA is up-regulated in mouse brain after stroke.The serpin activity of PA I-1 helps to prevent tissue-type PA -induced neuron death.However, we have previously found that PAI-1 has a novel biological function in the CNS: the contribution to survival of neurites on neurons. In neuronally differentiated rat pheochromocytoma (PC-12) cells, a deficiency of PA I-1 in vitro caused a significant reduction in Bcl-2 and Bcl-XL mRNAs and an increase in Bcl-XS and Bax mRNAs.The change in the balance between mRNA expressions of the anti- and pro-apoptotic Bcl-2 family proteins promoted the apoptotic sequence: cas-pase-3 activation, cytochrome c release from mitochondria and DNA fragmentation. Our results indicate that PA I-1 has an antiapoptotic role in neurons.PAI-1 prevented the disintegration of the formed neuronal networks by maintaining or promoting neuroprotective signaling through the MAPK/ ERK pathway, suggesting that the neuroprotective effect of PAI-1 is independent of its action as a protease inhibitor. This review discusses the neuroprotective effects of PA I-1 in vitro, together with the relevant data from other laboratories. Special emphasis is placed on its action on PC-12 cells.


2016 ◽  
Vol 116 (12) ◽  
pp. 1032-1040 ◽  
Author(s):  
Xiaohua Zhou ◽  
Maarten L. V. Hendrickx ◽  
Gholamreza Hassanzadeh-Ghassabeh ◽  
Serge Muyldermans ◽  
Paul J. Declerck

SummaryPlasminogen activator inhibitor 1 (PAI-1) is the principal physiological inhibitor of tissue-type plasminogen activator (t-PA) and has been identified as a risk factor in cardiovascular diseases. In order to generate nanobodies against PAI-1 to interfere with its functional properties, we constructed three nanobody libraries upon immunisation of three alpacas with three different PAI-1 variants. Three panels of nanobodies were selected against these PAI-1 variants. Evaluation of the amino acid sequence identity of the complementarity determining region-3 (CDR3) reveals 34 clusters in total. Five nanobodies (VHH-s-a98, VHH-2w-64, VHH-s-a27, VHH-s-a93 and VHH-2g-42) representing five clusters exhibit inhibition towards PAI-1 activity. VHH-s-a98 and VHH-2w-64 inhibit both glycosylated and non-glycosylated PAI-1 variants through a substrate-inducing mechanism, and bind to two different regions close to αhC and the hinge region of αhF; the profibrinolytic effect of both nanobodies was confirmed using an in vitro clot lysis assay. VHH-s-a93 may inhibit PAI-1 activity by preventing the formation of the initial PAI-1•t-PA complex formation and binds to the hinge region of the reactive centre loop. Epitopes of VHH-s-a27 and VHH-2g-42 could not be deduced yet. These five nanobodies interfere with PAI-1 activity through different mechanisms and merit further evaluation for the development of future profibrinolytic therapeutics.


2007 ◽  
Vol 98 (08) ◽  
pp. 296-303 ◽  
Author(s):  
Elitsa Dimova ◽  
Malgorzata Jakubowska ◽  
Thomas Kietzmann

SummaryPlasminogen activator inhibitor-1 (PAI-1) controls the regulation of the fibrinolytic system in blood by inhibiting both urokinase-type and tissue-type plasminogen activators. Enhanced levels of PAI-1 are related to pathological conditions associated with hypoxia or hyperinsulinemia. In this study, we investigated the regulation of PAI-1 expression by glucagon and the cAMP/ PKA/CREB signalling pathway in the liver. Stimulation of the cAMP/PKA/CREB signalling cascade by starvation in vivo or glucagon in vitro induced PAI-1 gene expression in liver. Furthermore, this response was associated with enhanced phosphorylation of CREB. By using EMSAs we found that three promoter elements, the HRE2, E-box 4 and E-box 5, were able to bind CREB but only the HRE2 and E5 appeared to be functionally active. Reporter gene assays confirmed that cAMP induced PAI-1 gene transcription via the same element in both human and rat promoters. Interestingly, although the HRE2 was involved, the glucagon/cAMP pathway had no influence on hypoxia-inducible factor-1 (HIF-1) mRNA and protein levels. Thus, CREB binding to the HIF-1 responsive elements in PAI-1 promoter mediates the glucagon effect in the liver.


Sign in / Sign up

Export Citation Format

Share Document