Layered Carbon Nanotube-Polyelectrolyte Electrodes Outperform Traditional Neural Interface Materials

Nano Letters ◽  
2009 ◽  
Vol 9 (12) ◽  
pp. 4012-4018 ◽  
Author(s):  
Edward Jan ◽  
Jeffrey L. Hendricks ◽  
Vincent Husaini ◽  
Sarah M. Richardson-Burns ◽  
Andrew Sereno ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1890
Author(s):  
Monika Rdest ◽  
Dawid Janas

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.


2015 ◽  
Vol 54 (9) ◽  
pp. 095102 ◽  
Author(s):  
Nuri Na ◽  
Kei Hasegawa ◽  
Xiaosong Zhou ◽  
Mizuhisa Nihei ◽  
Suguru Noda

Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 725-733 ◽  
Author(s):  
Lin Qiu ◽  
Pu Guo ◽  
Qinyu Kong ◽  
Chong Wei Tan ◽  
Kun Liang ◽  
...  

2012 ◽  
Vol 116 (6) ◽  
pp. 3903-3909 ◽  
Author(s):  
Hongyuan Chen ◽  
Minghai Chen ◽  
Jiangtao Di ◽  
Geng Xu ◽  
Hongbo Li ◽  
...  

2018 ◽  
Vol 13 (5) ◽  
pp. 054102 ◽  
Author(s):  
Katarzyna Krukiewicz ◽  
Magdalena Chudy ◽  
Catalina Vallejo-Giraldo ◽  
Małgorzata Skorupa ◽  
Daria Więcławska ◽  
...  

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Andrew J. McNamara ◽  
Yogendra Joshi ◽  
Zhuomin Zhang ◽  
Kyoung-sik Moon ◽  
Ziyin Lin ◽  
...  

Recently, much attention has been given to reducing the thermal resistance attributed to thermal interface materials (TIMs) in electronic devices, which contribute significantly to the overall package thermal resistance. Thermal transport measured experimentally through several vertically aligned carbon nanotube (VACNT) array TIMs anchored to copper and silicon substrates is considered. A steady-state infrared (IR) microscopy experimental setup was designed and utilized to measure the cross-plane total thermal resistance of VACNT TIMs. Overall thermal resistance for the anchored arrays ranged from 4 to 50 mm2 KW-1. These values are comparable to the best current TIMs used for microelectronic packaging. Furthermore, thermal stability after prolonged exposure to a high-temperature environment and thermal cycling tests shows limited deterioration for an array anchored using a silver-loaded thermal conductive adhesive (TCA).


Author(s):  
Tao Tong ◽  
Yang Zhao ◽  
Lance Delzeit ◽  
Ali Kashani ◽  
Arun Majumdar ◽  
...  

State-of-the-art thermal interface materials are briefly reviewed with an emphasis on the emerging trend of using carbon nanotubes to increase interface thermal performance. Vertically aligned multi-walled carbon nanotube (MWCNT) arrays were grown and applied as thermal interfacial enhancing materials. It is expected that the highly thermally conductive channels directly bridging the mating surfaces would significantly enhance the interface thermal conductance. We extended the all-optical pump and probe phase sensitive transient thermo-reflectance (PSTTR) method and used it to measure the interfacial properties of a three-layer sample of a vertically aligned MWCNT array grown on silicon (Si) substrate dry adhered to a glass plate. The dominant thermal resistance is identified as the dry adhered MWCNT-glass interface with a thermal conductance of ~5.9 × 104 W/m2·K, compared with MWCNT-Si interface of almost two orders of magnitude higher. Tentative explanations on the difference in the two interfaces and ways for future improvements are provided. The PSTTR measurement principle and issues are also discussed in the context.


Sign in / Sign up

Export Citation Format

Share Document