Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

ACS Photonics ◽  
2014 ◽  
Vol 1 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Ala’a O. El-Ballouli ◽  
Erkki Alarousu ◽  
Anwar Usman ◽  
Jun Pan ◽  
Osman M. Bakr ◽  
...  
2006 ◽  
Vol 959 ◽  
Author(s):  
Itaru Kamiya ◽  
Kohtaro Matsuura ◽  
Tsuyoshi Higashinakagawa

ABSTRACTSelf-assembled (SA) quantum dots (QDs) have been widely studied due to the facileness in their preparation. Unlike other types of QDs that require complicated fabrication processes, SA QDs are prepared merely by depositing materials that have different bandgaps and lattice constants to the with respect to the substrate by epitaxial crystal growth techniques. InAs QDs on GaAs(001) grown by MBE or MOCVD have been a typical example, and their optoelectronic properties have been extensively investigated. For device applications, it is essential that their size and spatial distribution are controlled. However, since SA QDs are formed through random processes, it is not easy to achieve size and distribution uniformity without prior processing the substrate prior to crystal growth. A number of studies have been performed to understand the fundamental mechanisms of SA QD formation that would provide us with information to achieve such goal. Here, we performed real-time observation of SA InAs QD growth on GaAs(001) by MBE. In contrast to most previous reports that employed growth interruption, by following the time transient of RHEED specular beam in detail, we obtained information about nucleation and evolution of the QDs, and have been able to distinguish processes that are dependent and independent of growth rate. In addition, the results reveal that surface migration of In/As atoms and their incorporation into QDs, with the aid of the wetting layer, can be observed. We will also provide a quantitative discussion on these processes.


Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.


1997 ◽  
Vol 491 (2) ◽  
pp. 436-450 ◽  
Author(s):  
C. Alcock ◽  
W. H. Allen ◽  
R. A. Allsman ◽  
D. Alves ◽  
T. S. Axelrod ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jiaqi Zhou ◽  
Chaoxiong He ◽  
Ming-Ming Liu ◽  
Enliang Wang ◽  
Shaokui Jia ◽  
...  

2021 ◽  
pp. 103786
Author(s):  
Dongdong Han ◽  
Yijie Wang ◽  
Zhanqiang Hui ◽  
Zhixing Zhang ◽  
Kaili Ren ◽  
...  

2012 ◽  
Vol 100 (19) ◽  
pp. 193702 ◽  
Author(s):  
Mikio Kato ◽  
Walter Meissl ◽  
Kenji Umezawa ◽  
Tokihiro Ikeda ◽  
Yasunori Yamazaki

Sign in / Sign up

Export Citation Format

Share Document