Evaluation of the green fluorescent protein (GFP) encapsulation in outer membrane vesicles (OMVs) produced by a hypervesiculating strain of Escherichia coli

Author(s):  
Nicolás Rincón Téllez ◽  
Juan Valderrama ◽  
Héctor Javier Luna Wandurraga ◽  
Juan C Cruz ◽  
Luis H. Reyes
2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshihiro Ojima ◽  
Tomomi Sawabe ◽  
Mao Nakagawa ◽  
Yuhei O. Tahara ◽  
Makoto Miyata ◽  
...  

Escherichia coli produces extracellular vesicles called outer membrane vesicles (OMVs) by releasing a part of its outer membrane. We previously reported that the combined deletion of nlpI and mlaE, related to envelope structure and phospholipid accumulation in the outer leaflet of the outer membrane, respectively, resulted in the synergistic increase of OMV production. In this study, the analysis of ΔmlaEΔnlpI cells using quick-freeze, deep-etch electron microscopy (QFDE-EM) revealed that plasmolysis occurred at the tip of the long axis in cells and that OMVs formed from this tip. Plasmolysis was also observed in the single-gene knockout mutants ΔnlpI and ΔmlaE. This study has demonstrated that plasmolysis was induced in the hypervesiculating mutant E. coli cells. Furthermore, intracellular vesicles and multilamellar OMV were observed in the ΔmlaEΔnlpI cells. Meanwhile, the secretion of recombinant green fluorescent protein (GFP) expressed in the cytosol of the ΔmlaEΔnlpI cells was more than 100 times higher than that of WT and ΔnlpI, and about 50 times higher than that of ΔmlaE in the OMV fraction, suggesting that cytosolic components were incorporated into outer-inner membrane vesicles (OIMVs) and released into the extracellular space. Additionally, QFDE-EM analysis revealed that ΔmlaEΔnlpI sacculi contained many holes noticeably larger than the mean radius of the peptidoglycan (PG) pores in wild-type (WT) E. coli. These results suggest that in ΔmlaEΔnlpI cells, cytoplasmic membrane materials protrude into the periplasmic space through the peptidoglycan holes and are released as OIMVs.


2002 ◽  
Vol 68 (9) ◽  
pp. 4209-4215 ◽  
Author(s):  
Luc Dedieu ◽  
Jean-Marie Pagès ◽  
Jean-Michel Bolla

ABSTRACT Porins allow exchanges between bacteria and their environment. In the gram-negative food-borne pathogen Campylobacter jejuni two porins, major outer membrane protein (MOMP) and Omp50, have been identified. MOMP is synthesized at a very high level under laboratory culture conditions, suggesting that its promoter functions very efficiently under these conditions. In Campylobacter samples, we observed that MOMP porin expression increased at a high temperature (42°C) or a high pH (pH 8.5) compared to expression at a low temperature (31°C) or an acidic pH (pH 5.5). To study the regulation of MOMP expression at the transcriptional level, we constructed an momp-gfp fusion in which gfp expression was put under the control of the momp promoter. Interestingly, we observed the same pattern of regulation in Escherichia coli, as monitored by green fluorescent protein production, that was found in Campylobacter. The ranges of pH and temperature tested are physiologically relevant, because they can be found in the digestive tracts of both birds and humans, which are both colonized by Campylobacter. Our results suggest that a component of the regulatory mechanism is conserved in C. jejuni and E. coli. However, medium osmolarity and sodium salicylate did not have a significant effect on C. jejuni momp promoter activity in E. coli, suggesting that major regulatory elements of E. coli porin expression do not participate in MOMP regulation. In contrast, mechanisms involving DNA supercoiling may be involved, as shown by DNA gyrase inhibition assays. These findings are a step towards determining the role of outer membrane proteins in the adaptation of C. jejuni to its environment.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Ilaria Zanella ◽  
Enrico König ◽  
Michele Tomasi ◽  
Assunta Gagliardi ◽  
Luca Frattini ◽  
...  

2008 ◽  
Vol 74 (23) ◽  
pp. 7431-7433 ◽  
Author(s):  
Mónica Martínez-Alonso ◽  
Nuria González-Montalbán ◽  
Elena García-Fruitós ◽  
Antonio Villaverde

ABSTRACT We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure.


2006 ◽  
Vol 59 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Carlos Balsalobre ◽  
Jose Manuel Silvan ◽  
Stina Berglund ◽  
Yoshimitsu Mizunoe ◽  
Bernt Eric Uhlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document