scholarly journals Comparison of the in Vitro Replication of the 7-(2-Oxoheptyl)-1,N2-etheno-2′-deoxyguanosine and 1,N2-Etheno-2′-deoxyguanosine Lesions bySulfolobus solfataricusP2 DNA Polymerase IV (Dpo4)

2010 ◽  
Vol 23 (8) ◽  
pp. 1330-1341 ◽  
Author(s):  
Plamen P. Christov ◽  
Katya V. Petrova ◽  
Ganesh Shanmugam ◽  
Ivan D. Kozekov ◽  
Albena Kozekova ◽  
...  
2006 ◽  
Vol 188 (24) ◽  
pp. 8573-8585 ◽  
Author(s):  
Laurie H. Sanders ◽  
Andrea Rockel ◽  
Haiping Lu ◽  
Daniel J. Wozniak ◽  
Mark D. Sutton

ABSTRACT Pseudomonas aeruginosa is a human opportunistic pathogen that chronically infects the lungs of cystic fibrosis patients and is the leading cause of morbidity and mortality of people afflicted with this disease. A striking correlation between mutagenesis and the persistence of P. aeruginosa has been reported. In other well-studied organisms, error-prone replication by Y family DNA polymerases contributes significantly to mutagenesis. Based on an analysis of the PAO1 genome sequence, P. aeruginosa contains a single Y family DNA polymerase encoded by the dinB gene. As part of an effort to understand the mechanisms of mutagenesis in P. aeruginosa, we have cloned the dinB gene of P. aeruginosa and utilized a combination of genetic and biochemical approaches to characterize the activity and regulation of the P. aeruginosa DinB protein (DinB Pa ). Our results indicate that DinB Pa is a distributive DNA polymerase that lacks intrinsic proofreading activity in vitro. Modest overexpression of DinB Pa from a plasmid conferred a mutator phenotype in both Escherichia coli and P. aeruginosa. An examination of this mutator phenotype indicated that DinB Pa has a propensity to promote C→A transversions and −1 frameshift mutations within poly(dGMP) and poly(dAMP) runs. The characterization of lexA + and ΔlexA::aacC1 P. aeruginosa strains, together with in vitro DNA binding assays utilizing cell extracts or purified P. aeruginosa LexA protein (LexA Pa ), indicated that the transcription of the dinB gene is regulated as part of an SOS-like response. The deletion of the dinB Pa gene sensitized P. aeruginosa to nitrofurazone and 4-nitroquinoline-1-oxide, consistent with a role for DinB Pa in translesion DNA synthesis over N 2 -dG adducts. Finally, P. aeruginosa exhibited a UV-inducible mutator phenotype that was independent of dinB Pa function and instead required polA and polC, which encode DNA polymerase I and the second DNA polymerase III enzyme, respectively. Possible roles of the P. aeruginosa dinB, polA, and polC gene products in mutagenesis are discussed.


1994 ◽  
Vol 236 (1) ◽  
pp. 151-164 ◽  
Author(s):  
Pascale Belguise-Valladier ◽  
Hisaji Maki ◽  
Mutsuo Sekiguchi ◽  
Robert P.P. Fuchs

2006 ◽  
Vol 188 (13) ◽  
pp. 4992-4995 ◽  
Author(s):  
Masami Yamada ◽  
Tatsuo Nunoshiba ◽  
Masatomi Shimizu ◽  
Petr Gruz ◽  
Hiroyuki Kamiya ◽  
...  

ABSTRACT Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.


Sign in / Sign up

Export Citation Format

Share Document